
日本ソフトウェア科学会第 20回大会（2003年度）論文集 1

MmpP: Maximum Marking Problems in Parallel

Kazuhiko Kakehi1, Zhenjiang Hu1,2 and Masato Takeichi1

1. Graduate School of Information Science and Technology, University of Tokyo
2. PRESTO, Japan Science and Technology Corporation

kaz@ipl.t.u-tokyo.ac.jp, {hu,takeichi}@mist.i.u-tokyo.ac.jp

Maximum marking problems (Mmp for short) are to put a mark on the entries of some given data

structure in a way such that a given constraint is satisfied and the sum of the weights associated with

marked entries is as large as possible. It was shown that the linear time algorithm can be obtained

provided that the characterizing function of the constraint is a finite homomorphism. This paper

demonstrates that we can also have the parallelizable form for solving Mmp through incorporating

accumulation into list homomorphisms and focusing on the property of finiteness in the accumulation.

1 Introduction

Maximum marking problems (Mmp for short) are
to put a mark on the entries of some given data
structure in a way such that a given constraint is
satisfied and the sum of the weights associated with
marked entries is as large as possible. For exam-
ple, k-maximum segment sum problems (k-mss for
short) find the maximum weight of the marked adja-
cent segment(s) separated at most in k parts. When
[3,−4, 2,−1, 6,−3] is given, the following mark (de-
noted by underline) returns the maximum weight
for each k.

[3,−4, 2,−1, 6,−3] (k = 1)
[3,−4, 2,−1, 6,−3] (k = 2)
[3,−4, 2,−1, 6,−3] (k ≥ 3)

This paper demonstrates the parallelization of
Mmp. It was shown that the linear time algo-
rithm can be obtained provided that the character-
izing function of the constraint is a finite homomor-
phism [8, 2]. Homomorphism displays good charac-
teristics for parallelization [3, 4, 5, 6], but currently
it does not co-operate with accumulation which of-
ten enables us to describe functions smoothly. We
first define H-homomorphism which incorporates
the notion of accumulation into homomorphisms
and show equivalence between sequential specifica-
tions called H-form and H-homomorphisms. We
then focus on the cases where the accumulation do-
main is finite, which are formalized in H′-form, and
see they are translated into homomorphisms.

We finally show that Mmp can be reformatted in
an almost homomorphism via specifying their con-
straints in H′-form. As a notable example, we de-
rive a solution for k-mss which runs in parallel effi-
ciently.

Preliminaries

Throughout this paper, we shall use the notation
of BMF (Bird-Meertens Formalism) [1, 9], which
enables us to describe both of programs and their
transformation concisely. For readability we also
borrow the notation of Haskell [7].

2 Accumulative homomorphisms

In order to extend homomorphisms with accumu-
lation, we define H-homomorphism that utilizes an
accumulation for inheriting computation from the
previous call.

Definition 1 (H-Homomorphism) Function h

is said to be an H-homomorphism, if there exist
associative operators ⊕ and ⊗, a binary operator
ª, and a homomorphism g, such that

h [a] c = cª a

h (x ++y) c = h x c⊕ h y (c⊗ g x) .

Here, g is a homomorphism satisfying

g [a] = k a

g (x ++y) = g x⊗ g y .

2

日本ソフトウェア科学会第 20回大会（2003年度）論文集 2

H-homomorphism is a natural extension of homo-
morphism. The additional accumulating parameter
c serves for information propagation. When a list
is divided into x and y, computation on x receives
the original c while h on y uses accumulative infor-
mation also related to x.

Cyclic dependency is avoided from information
propagation as the definition indicates. Therefore
we do not treat the case where update of the accu-
mulation parameter for computation on x uses in-
formation related to y. If the accumulation parame-
ter is not used at all (i.e., dead), H-homomorphism
degenerates to homomorphism.

The following lemma shows that we can evaluate
H-homomorphisms in parallel. It is implemented
using the four parallel skeletons map (fun ∗ list),
reduce (fun / list), scan (fun −//unit list) and zipwith
(list Υfun list), written as infix operators.

Lemma 1 (H-Homomorphism in Skeletons)

An H-homomorphism h defined above can be
decomposed into the form using parallel skeletons.

h x c = ⊕ / ((⊗ −//c (k ∗ x))Υª x)

2

3 H-form

It is often the case that a function is defined se-
quentially by induction on the cons list, rather than
on the join list. In order to enable smooth transfor-
mation, we define the following H-form. The fol-
lowing lemma shows the function in H-form can be
transformed in H-homomorphism.

Definition 2 (H-Form) Let p, q, r be given func-
tions, ⊕ and ⊗ be associative operators. The func-
tion f is said to be in H-form, if it is defined in the
following (sequential) recursive form, which has a
parallel equivalent of H-homomorphism.

f [] c = r c

f (a : x) c = p a c⊕ f x (c⊗ q a)

We write f = H[[r, (p,⊕), (q,⊗)]]. 2

Lemma 2 (H-Form into H-Homomorphism)

A H-form function f = H[[r, (p,⊕), (q,⊗)]] can be

redefined in terms of a H-homomorphism h as
follows.

f x c0 = fst (h x c0)

h [a] c = (p a c⊕ r (c⊗ q a), p a c)
h (x ++y) c = h x c⊕′ h y (c⊗ g x)

(a1, b1)⊕′ (a2, b2) = (b1 ⊕ a2, b1 ⊕ b2)
g [a] = q a

g (x ++y) = g x⊗ g y

fst takes out the first in a pair. 2

4 H′-Form: H-Form with Finite Ac-

cumulation

Consider a example to count the number of
‘mountains’ from a list of three tags, Up, Dn, Fl .

cmnt x = cmnt ′ x (Up,False)

cmnt ′ [] (c1, c2)
= if (isUp c1 ∧ c2) then 1 else 0

cmnt ′ (a : x) (c1, c2)
= (if (isUp c1 ∧ isDn a) then 1 else 0)

+ cmnt ′ x (if isFl a then (c1, c2)
else (a,True))

These tags indicate the position is a place of
climbing up, sloping down, or flat plane, respec-
tively. With the help of accumulation we can write
a program cmnt : The accumulation passes the cur-
rent mark (Up or Dn) to the successive computa-
tion. When the current mark is Fl , the new accu-
mulation refers to the incoming accumulation not
to lose which direction the preceding list has. The
boolean value in the accumulating pair works to re-
turn the correct value 0 when the input list is either
empty or has Fls only. Due to the dependency, we
cannot easily find an associative operator ⊗ when
we try to fit cmnt ′ in the H-form.

4.1 Closures in a Finite Domain

One idea for this is to use closures, where we
can enjoy associativity of composition. Represent-
ing them in a naive way, however, just results in
holding a big and enlarging closure.

Closures on a finite domain and range have good
properties. Given a function f :: A→ B → B with

日本ソフトウェア科学会第 20回大会（2003年度）論文集 3

finite B = {b1, . . . , bn}, a closure of this function
can be represented using case branching once the
first parameter a1 is specified:

f a1 = λ b . case x of b1 → b′1
. . .

bn → b′n ,

where b′i = f a1 bi. Closures commonly keep their
function body as it is, except for the parameters
already filled. When the domain of the unfilled pa-
rameter is finite, we can perform preemptive com-
putation by specifying the unfilled part exhaus-
tively. Naturally {b′1, . . . , b′n} ⊆ B. Different a2

may construct different case branching, yet they are
composible since they share B as their domain and
range. Therefore

(f a2) ◦ (f a1)

=

λ b . case b of

b1 → b′′1
. . .

bn → b′′n

◦

λ b . case b of

b1 → b′1
. . .

bn → b′n

= λ b . case b of b1 → b′′j1
. . .

bn → b′′jn

where b′ji
= bi. Composition is obtained by match-

ing the results of the right closure with the case
branching in the left. Now we see the resulting clo-
sure keeps the shape, meaning composition of such
closures stays in some fixed size. This amount de-
pends on the size of B. This closure can be suitably
implemented by an array whose size depends on the
B’s size.

4.2 H′-Form

Finiteness of the domain and the range settles
the problems of associativity through reducing to
exhaustive case branching. We then give a variant
of H-form, namely H′-form, which has its parallel
equivalent in homomorphism.

Definition 3 (H′-Form) The function f ′ is said
to have H′-form H′[[r, (p,⊕), q′]], if it is defined in
the following (sequential) recursive form with an
associative operator ⊕ and a function q′ which has

the finite range C.

f ′ [] c = r c

f ′ (a : x) c = p a c⊕ (f ′ x (q′ a c))

2

Lemma 3 (H′-Form into Homomorphism)

A H′-form function f ′ = H′[[r, (p,⊕), q′]] can
be redefined with a homomorphism. The finite
domain C is assumed to take the form of a list.

f ′ x c0 = accept (h′ x) c0

h′ [a] = [tup a c | c← C]
h′ (x ++y) = h x⊕′ h y

accept x c0 = [·]−1

[b⊕ r c′ | (b, (c, c′))← x, c == c0]
tup a c = (p a c , (c, q′ a c))

x⊕′ y = [(bx ⊕ by, (cx, c′y))
| (bx, (cx, c′x))← x,

(by, (cy, c′y))← y, c′x == cy]

[·]−1 takes out the element from a singleton list. 2

5 Mmp in Parallel

Mmp can be formally specified as follows.

mmp :: [Int]→ Int

mmp P x = (maximum ◦map sumM ◦ filter P

◦marking) x

Given a list of values x, we use marking to enu-
merate all the ways of marking; through filtering
out lists which do not satisfy P , namely the con-
straints on how lists are marked, we finally choose
the maximum weight among the sums of the marked
elements of those marked lists.

Mmp is parameterized by the predicate P for
the marking constraint. On the same list, different
predicates define different problems, and calculate
different maximum weights. One of them is adj ,
which describes whether the marked elements are
adjacent or not.

5.1 Describing Predicates P in H′-Form

We first see whether predicates P can be writ-
ten in H′-form. In the previous section we have ob-
tained homomorphism from H′-form, wrapped with

日本ソフトウェア科学会第 20回大会（2003年度）論文集 4

a single function. Similarly, consider defining pred-
icates in the following form:

P x = judge (f x c0)

After computing a H′-form function f as defined in
Definition 2 with a suitable initial value c0 in its
accumulating parameter, the function judge maps
the result of f to a boolean value. This relaxation
enables us to find a definition of the generalized k-
adjacentness adj k, which is required for k-mss to
examine whether the number of marked segments
in a list is at most k, as follows.

adj k x = judge (adj ′k x False)

adj ′k [] m = 0
adj ′k (a : x) m = (if ¬m ∧ isM a then 1 else 0)

+′kadj
′
k x (isM a)

judge v = v ≤ k

a +′k b = if a + b > k then k + 1
else a + b

The intuition is to count the beginning of segments
where the current element is marked and the el-
ement before it is unmarked. The function isM
returns True if the element is marked, False oth-
erwise. Summation +′k treats integers more than k

are all equal to k + 1, since they are judged False
eventually. This abstraction later works to keep the
table size in Mmp independent from the length of
given lists.

5.2 Mmp in Homomorphism

Now that predicates are known to be transformed
into homomorphism, we tackle the main problem to
reduce Mmp on list structures in some homomor-
phisms. The same idea in Lemma 3 also applies
here, namely to specify the possible cases exhaus-
tively to make a table, which gives us the following
theorem.

Theorem 1 (Mmp in Almost Homomorphism)

Assume the constraint is P x = judge (f x c0),
where f = H′[[r, (⊕, p), q′]] and C is the list
which holds all elements in the domain of the f ’s
accumulation.

mmp P x = accept (mmpp x) c0

mmpp [a] = G [tupmmpp m a c | c← C,

m← [True, False]]
mmpp (x ++y) = G (mmpp x⊕′ mmpp y)

Given a list of pairs [(x1, y1), . . . , (xn, yn)], the
function G is to group the pairs of the same first
component x in a pair (x, y) such that y is the max-
imum of the second components. For instance,

G [(2, 1), (1, 5), (2, 10), (2, 2), (1, 1)] = [(1, 5), (2, 10)] .

The definitions of other auxiliary functions are as
follows.

accept x c0

= maximum [w | ((b, (c, c′)), w)← x ,

c == c0 , judge (b⊕ r c′)]
tupmmpp m a c

= ((p (m,a) c , (c, q (m,a) c)),
if m then a else 0)

x⊕′ y
= [((bx ⊕ by, (cx, c′y)), wx + wy)

| ((bx, (cx, c′x)), wx)← x,

((by, (cy, c′y)), wy)← y,

c′x == cy]

2

Finiteness of the range of +′k and the accumula-
tion guarantees the number of pairs (b, (c, c′)) in the
resulting list elements is within some constant. The
associative operation ⊕′ can produce the same pair
(b, (c, c′)) to have different weights w; G finds out
their maximum which is of our interest and reduces
the number again within the constant. Due to this
constant each of ⊕′ and G is executed in some con-
stant time for any cases, and the obtained function
can be executed efficiently in parallel.

6 Conclusion

In this paper we demonstrated how accumula-
tion is incorporated in the framework of homomor-
phisms. We have seen that finiteness of accumu-
lations’ domain played an interesting role for par-
allelization. Our formalization derived a paralleliz-
able form of Mmp, k-mss as its notable example.

日本ソフトウェア科学会第 20回大会（2003年度）論文集 5

References
[1] R. Bird. An introduction to the theory of lists. In

M. Broy, editor, Logic of Programming and Calculi
of Discrete Design, pages 5–42. Springer-Verlag,
1987.

[2] R. Bird. Maximum marking problems. Journal of
Functional Programming, 11(4):411–424, 2001.

[3] M. Cole. Parallel programming with list homomor-
phisms. Parallel Processing Letters, 5(2), 1995.

[4] S. Gorlatch. Constructing list homomorphisms.
Technical Report MIP-9512, Fakultät für Mathe-
matik und Informatik, Universität Passau, August
1995.

[5] Z.N. Grant-Duff and P. Harrison. Parallelism
via homomorphism. Parallel Processing Letters,
6(2):279–295, 1996.

[6] Z. Hu, H. Iwasaki, and M. Takeichi. Formal deriva-
tion of efficient parallel programs by construction
of list homomorphisms. ACM Transactions on
Programming Languages and Systems, 19(3):444–
461, 1997.

[7] S. Peyton Jones and J. Hughes, editors. Haskell 98:
A Non-strict, Purely Functional Language. Avail-
able online: http://www.haskell.org, February
1999.

[8] I. Sasano, Z. Hu, M. Takeichi, and M. Ogawa.
Make it practical: A generic linear time algorithm
for solving maximum weightsum problems. In The
2000 ACM SIGPLAN International Conference on
Functional Programming (ICFP 2000), pages 137–
149, Montreal, Canada, September 2000. ACM
Press.

[9] D.B. Skillicorn. Architecture-independent parallel
computation. IEEE Computer, 23(12):38–51, De-
cember 1990.

