
日本ソフトウェア科学会第 20回大会（2003年度）論文集 1

Parallelizing Polytypic Programs with Accumulations

Kiminori MATSUZAKI †, Kazuhiko KAKEHI †,

Zhenjiang HU †‡ and Masato TAKEICHI †

†Mathematical Informatics, Graduate School of
Information Science and Technology, University of Tokyo

{kmatsu,kaz}@ipl.t.u-tokyo.ac.jp
{takeichi,hu}@mist.i.u-tokyo.ac.jp

‡PRESTO 21, Japan Science and Technology Corporation

Catamorphism plays an important role when we make a sequential program on recursive datatypes.

In the parallel programming on lists, homomorphism is an important concept and Kakehi et al. have

extended it to a higher-order one to deal with accumulations. In this paper, we generalize it to on

recursive datatypes. We define parallelizable higher-order catamorphism for recursive functions with an

accumulative parameter, and show those functions can be transformed into equivalent parallel programs

in terms of polytypic skeletons. Furthermore, we demonstrate the parallelization of recursive functions

with accumulations on a finite domain.

1 Introduction

Skeletal parallel programming [5] has been pro-
posed to encourage programmers to write codes
with a ready-made skeletons. Many researchers
have devoted themselves for list skeletons [3, 11]
and systematic methodology with them [7, 4, 9].
On the other hand, in the case for general recursive
datatypes, polytypic skeletons have been proposed
[2, 12]. However, how to build efficient parallel pro-
grams with them is not so straightforward.

For example, let us consider to build an efficient
parallel program which computes the number of
blocks on rose trees. The input is a rose tree whose
each node is either True or False, and a block is
a group of adjacent nodes in which all nodes are
True. We want to make a program which runs in
O(log N) parallel time, where N is the number of
nodes, even if the input is imbalanced.

Already, Ahn et al. [2] have proposed a system-
atic method to parallelize the functions on recursive
datatypes. However, their method works efficiently
only when the input is balanced. In this paper,
we propose a methodology to parallelize functions
with an accumulative parameter with guaranteeing
the existence of logarithmic implementation even
for imbalanced structures. Our main approach is

to extend the work of Kakehi et al. [9] to the poly-
typic skeletons. Our contributions are summarized
as follows.

• We give general forms for functions with
certain kinds of accumulations on recursive
datatypes, and show how the functions are par-
allelized with polytypic skeletons.

• We put reasonable restrictions, such as associa-
tivity of operators, to guarantee the existence
of logarithmic implementations even if the in-
put is imbalanced.

• In many cases accumulations are done on some
finite domains. We demonstrate the systematic
derivation of associative operators from the re-
cursive function on a finite domain, and show
how such functions are parallelized.

2 Parallel Skeletons

In functional languages, recursive datatypes are
generally declared, borrowing the notation of the
Haskell language [8], as follows.

data RType = C1 α1 RType(11) · · · RType(1ni)

...
| Cm αm RType(m1) · · · RType(mnm)



日本ソフトウェア科学会第 20回大会（2003年度）論文集 2

map f (Ci a x1 · · · xn) = Ci (fi a) (map f x1) · · · (map f xn)
zip (Ci a x1 · · · xn) (Ci b y1 · · · yn) = Ci (a, b) (zip x1 y1) · · · (zip xn yn)
reduce (f ,⊕) (Ci a x1 · · · xn) = fi a⊕ reduce (f ,⊕) x1 ⊕ · · · ⊕ reduce (f ,⊕) xn

uAcc (f ,⊕) (Ci a x1 · · · xn) = Ci (fi a ⊕ root x′1 ⊕ · · · ⊕ root x′n) x′1 · · · x′n
where (x′1, . . . , x

′
n) = (uAcc (f ,⊕) x1, . . . , uAcc (f ,⊕) xn)

dAcc (F ,⊕) (Ci a x1 · · · xn) c = Ci c (dAcc (F ,⊕) x1 c′1) · · · (dAcc (F ,⊕) xn c′n)
where (c′1, . . . , c

′
n) = (c⊕ fi1 a, . . . , c⊕ fin a)

Figure 1: Primitive Polytypic Skeletons

Here, we have assumed that each data constructor
Ci has one non-recursive argument of type αi and
ni recursive arguments.

The primitive parallel skeletons on the recursive
datatypes are map, zip, reduce, upwards accumulate
and downwards accumulate [2, 12], and their formal
definitions are described in Figure 1.

The map skeleton map f applies fi to each non-
recursive argument constructed with Ci. The zip
skeleton accepts two data of the same shape and
zip up the corresponding arguments. The reduce
skeleton reduce (f ,⊕) reduces the input into a value
by applying fi to each non-recursive argument and
put recursive arguments together with an associa-
tive operator ⊕. The upwards accumulate skele-
ton uAcc (f ,⊕) computes in a bottom-up man-
ner like reduce, and returns a tree of the same
shape as input. The downwards accumulate skele-
ton dAcc (F ,⊗) computes in a top-down manner by
updating an accumulative parameter with fij and
an associative operator ⊕.

We briefly indicate the cost of primitive skeletons.
Let N be the number of nodes and all functions be
computed in a constant time. With N processors,
the map and the zip skeletons are computed in O(1)
parallel time, and the other skeletons are computed
in O(log N) parallel time with tree contraction al-
gorithm [1, 6].

3 Catamorphism

Catamorphism is an important concept on recur-
sive datatypes. In this section, we first define a
sub-class of catamorphism, P-catamorphism, which
can be implemented efficiently in parallel. Then we

extend it to a higher-order one to deal with accu-
mulations.

Definition 1 (Catamorphism) A function h is
said to be a catamorphism, if there are functions
f = (f1, . . . , fm) such that h (Ci a x1 · · · xn) =
fi a (h x1) · · · (h xn) holds. 2

Catamorphic functions can be computed in O(h)
parallel time (h is the height of the input), and this
function turns out to be inefficient if the input tree
is imbalanced. To guarantee the logarithmic imple-
mentations, we define parallelizable catamorphism
with introducing the concept of associativity.

Definition 2 (P-Catamorphism) A function h

is said to be a P-catamorphism, if there are func-
tions f = (f1, . . . , fm) and an associative operator
⊕ such that h (Ci a x1 · · · xn) = fi a⊕h x1⊕· · ·⊕
h xn holds. We denote h as h ≡ P[[f ,⊕]]. 2

With the associativity of ⊕, we can efficiently paral-
lelize the P-catamorphic function in terms of prim-
itive skeletons, as shown in the following lemma.

Lemma 1 P-catamorphism h ≡ P[[f ,⊕]] is paral-
lelized with skeletons as h = reduce (f ,⊕). 2

Now, we extend the catamorphism into a higher-
order one, H-catamorphism, to deal with accumu-
lations.

Definition 3 (H-Catamorphism) A function h

is said to be a H-catamorphism, if there are func-
tions f = (f1, . . . , fm) and G = (g11, . . . , gmnm)
such that

h (Ci a x1 · · · xn) c =
fi (a, c) (h x1 (gi1 a c)) · · · (h xn (gin a c))

holds. 2



日本ソフトウェア科学会第 20回大会（2003年度）論文集 3

As is the case of catamorphism, the H-catamorphic
function are computed in O(h) parallel time. To
guarantee the efficiency for the imbalanced case, we
define a sub-class ofH-catamorphism, with the con-
cept of associativity.

Definition 4 (PH-Catamorphism) A function
h is said to be a PH-catamorphism, if there are
functions f = (f1, . . . , fm), G = (g11, . . . , gmnm

)
and associative operators ⊕,⊗ such that

h (Ci a x1 · · · xn) c =
fi (a, c)⊕ h x1 (c⊗ gi1 a)⊕ · · · ⊕ h xn (c⊗ gin a)

holds. The PH-catamorphism will be denoted as
h ≡ PH[[(f ,⊕), (G,⊗)]]. 2

By extending the diffusion theorem [7] to polytypic
skeletons, we can parallelize the PH-catamorphic
function in terms of primitive skeletons as shown in
the following lemma.

Lemma 2 PH-catamorphism h ≡ PH[[(f ,⊕),
(G,⊗)]] is parallelized with skeletons as
h x c = reduce (f ,⊕) (zip x (dAcc (G,⊗) x c)). 2

4 Accumulation on Finite Domain

In the previous section, we have defined the par-
allelizable form for the recursive program with an
accumulative parameter, however, in many cases it
is not so obvious to derive the associative operators
needed in the PH-catamorphism.

There are several cases that the accumulative op-
erator has a finite domain. In this section, we show
how we can derive the parallelized form based on
the finiteness of domain. Let Cl be a finite domain
with l elements; Cl = {c1, . . . , cl}. First, we de-
fine the PH’-Catamorphism which computes with
accumulation on a finite domain Cl.

Definition 5 (PH’-Catamorphism) A function
h is said to be a PH’-catamorphism, if there are
functions f = (f1, . . . , fm), an associative operator
⊕, and functions G = (g11, . . . , gmni) on a finite do-
main Cl for the accumulative parameter, such that

h (Ci a x1 · · · xn) c =
fi (a, c)⊕ (h x1 (gm1 a c))⊕ · · · ⊕ (h xn (gmn a c))

holds. We will denote the PH’-catamorphism as
h ≡ PH′[[(f ,⊕),G]] 2

When functions gij have a finite domain Cl for
the accumulative parameter, we can transform the
unary function gij a :: Cl → Cl into following form:

gij a = case of c1 → c′1, . . . , cl → c′l,

where c′1, . . . , c
′
l ∈ Cl. By noticing the fact that the

function composition is associative and the compo-
sition of gij a and gi′j′ a′ is reduced into the above
form, we can use the function composition for the
associative operator of the downwards accumulate
skeleton:

dAcc (G,⊗) id where a⊗ b = b ◦ a.

Here, the downwards accumulate computes the ac-
cumulation of functions for each node and we can
obtain the actual accumulative parameters by ap-
plying the original accumulative parameter of the
root with map skeleton.

map (app c) (dAcc (G,⊗) id)
where app c a = a c

a⊗ b = b ◦ a

With the discussion above, we can parallelize the
PH’-catamorphic function as shown in the following
lemma.

Lemma 3 PH’-catamorphism h ≡PH′[[(f ,⊕),G]]
is parallelized with skeletons, app and ⊗ defined
above, as follows.

h x c = let ct = map (app c) (dAcc (G,⊗) id)
in reduce (f ,⊕) (zip x ct) 2

5 Case Study

To see how the PH’-homomorphism works, let us
derive an efficient parallel program for the problem
in the introduction.

The datatype for rose trees is given as follows.

data RTree α = Leaf α

| Node α (List RT α)

data List RT α = Nil
| Cons (RTree α) (List RT α)



日本ソフトウェア科学会第 20回大会（2003年度）論文集 4

A recursive program with an accumulative pa-
rameter is obtained as follows. Here, the accumula-
tive parameter is used to represent the parent node
is marked or not, and the function cblk computes
the number of blocks.

cblk :: RTree Bool → Int
cblk t = cblk ′t t False

cblk ′t :: RTree Bool → Bool → Int
cblk ′t (Leaf a) c = count (a, c)
cblk ′t (Node a xs) c = count (a, c) + cblk ′l xs a

where count (a, c) = if (¬c ∧ a) then 1 else 0

cblk ′l :: List RT Bool → Bool → Int
cblk ′l (Nil) c = 0
cblk ′l (Cons t xs) c = mssp′t t c + mssp′l xs c

The recursive functions cblk ′t and cblk ′l are mu-
tually recursive functions. However if we consider
them as one function (we call it cblk ′), then cblk ′

satisfies PH’-Catamorphism. Therefore, we can ap-
ply Lemma 3 to parallelize it as follows.

cblk ′ t c

= let ct = map (app c) (dAcc (G,⊗) id)
in reduce (f , +) (zip x ct)
where a⊗ b = b ◦ a

app c a = a c

f = (count , count , const 0, const 0)
G = (λa.const a, λa.id , λa.id)

Here, f consists of the function for Leaf , Node, Nil
and Cons respectively, and G consists of the func-
tion for Node, the first and the second recursive call
of Cons respectively.

6 Conclusion

In this paper, we have defined the paralleliz-
able catamorphism, P-catamorphism, and the par-
allelizable catamorphism with accumulation, PH-
catamorphism. Based on the associativity of op-
erators, those functions are computed in O(log N)
parallel time with primitive skeletons even if the
input is imbalanced (N is the size of input). And
more, by paying our attention on the finiteness of
the domain of accumulation, we have defined an-
other parallelizable catamorphism with accumula-

tion, PH’-catamorhism and demonstrated the par-
allelization of PH’-catamorphism with skeletons.

This paper has introduced a simple derivation of
associative operators. There are systematic deriva-
tion of associative operators, context preservation
on lists [4] and binary trees [10], and we are cur-
rently working on the generalization of the theorem
to polytypic functions.

References
[1] K. Abrahamson, N. Dadoun, D. G. Kirkpatrik, and

T. Przytycka. A simple parallel tree contraction
algorithm. Journal of Algorithms, 10(2):287–302,
June 1989.

[2] J. Ahn and T. Han. An analytical method for par-
allelization of recursive functions. Parallel Process-
ing Letters, 10(4):359–370, 2000.

[3] R. S. Bird. An introduction to the theory of lists.
In M. Broy, editor, Logic of Programming and Cal-
culi of Discrete Design, volume 36 of NATO ASI
Series F, pages 5–42. Springer-Verlag, 1987.

[4] W.N. Chin, A. Takano, and Z. Hu. Parallelization
via context preservation. IEEE Computer Society
International Conference on Computer Languages
(ICCL’98), pages 153–162, May 1998.

[5] M. Cole. Algorithmic skeletons : a structured ap-
proach to the management of parallel computation.
Research Monographs in Parallel and Distributed
Computing, Pitman, London, 1989.

[6] J. Gibbons, W. Cai, and D. B. Skillicorn. Efficient
parallel algorithms for tree accumulations. Science
of Computer Programming, 23(1):1–18, 1994.

[7] Z. Hu, M. Takeichi, and H. Iwasaki. Diffusion: Cal-
culating efficient parallel programs. In 1999 ACM
SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM
’99), pages 85–94, San Antonio, Texas, January
1999. BRICS Notes Series NS-99-1.

[8] S. P. Jones and J. Hughes. Report on the
programming language haskell 98: A non-strict,
purely functional language. Available from
http://www.haskell.org/, February 1999.

[9] K. Kakehi, Z. Hu, and M. Takeichi. Mmpp: Max-
imum marking problems in parallel. In ソフトウェ
ア科学会第 20回大会 論文集, September 2003.

[10] K. Matsuzaki, Z. Hu, and M. Takeichi. Paralleliza-
tion with tree skeletons. In Annual European Con-
ference on Parallel Processing, Klagenfurt, Aus-
tria, Aug 2003. Springer-Verlag.

[11] D. B. Skillicorn. Foundations of Parallel Program-
ming. Cambridge University Press, 1994.

[12] D. B. Skillicorn. Parallel implementation of tree
skeletons. Journal of Parallel and Distributed
Computing, 39(2):115–125, 1996.


