
日本ソフトウェア科学会第 24回大会（2007年度）論文集 1

Bi-X Core: A General-Purpose Bidirectional Transformation

Language

Dongxi Liu Keisuke Nakano Yasushi Hayashi Zhenjiang Hu Masato Takeichi

Akimasa Morihata Yingfei Xiong

Department of Mathematical Informatics, University of Tokyo

{liu,ksk,hayashi,hu,takeichi}@mist.i.u-tokyo.ac.jp
{morihata,xiong}@ipl.t.u-tokyo.ac.jp

Bi-X Core is a general-purpose bidirectional transformation language, aiming to implement various

systems that need synchronization between their input data and output data. In syntax, Bi-X Core is

a first-order λ-calculus extended with two structured data types, tuple and variant. For ease of use,

some functional languages with more syntactic sugar can be defined based on Bi-X Core. The technical

problem we solve in this paper is how to define bidirectional semantics for a general-pupose functional

language. Bi-X Core is an ongoing work, and some examples are presented to demonstrate its usefulness.

1 Introduction

In the information world, data are often trans-
formed from one format into another for the rea-
sons like being used by different applications or de-
vices. When some data are changed, it is desirable
to keep all their replicas synchronized. Using lan-
guages like XSLT or Java, we can write programs for
data transformations, but these programs cannot
provide direct help for data synchronization. That
means we have to think about other mechanisms
to implement data synchronization. This case can
be remedied by using bidirectional transformation
languages, whose programs can not only implement
data transformation, but also provide help to data
synchronization.

The programs of bidirectional transformation
languages can run in two directions, called forward
direction and backward direction, respectively. In
the forward direction, they transform source data
into target data, as done by programs of ordinary
languages. In the backward direction, from the up-
dated target data and the original source data, they
produce new source data which reflect the updates
made to the target data. Due to this feature, bidi-
rectional transformation languages have played an
central role in some synchronization systems [1, 2].

There have been several bidirectional languages,

each of which is designed for a particular application
domain. The bidirectional languages in [3, 4, 5, 6]
are for transforming tree-strucutred data or XML
data; the language in [7] is used to define bidirec-
tional queries on relational databases; and the lan-
guages in [2] and [8] are being designed for process-
ing software models or Java source code, respec-
tively.

Since all existing bidirectional languages are
domain-specific, to address the bidirectional trans-
formation need from a new domain, one idea is that
we design a new bidirectional language for this do-
main. But developing a new language is not an
easy work, and it becomes worse if there are many
new domains that want bidirectional transforma-
tion. In this paper, we take another idea. That is,
we will design a general-purpose bidirectional trans-
formation language, and for applications in a new
domain, programmers can use this general-purpose
language to define domain-specific data structures
and abstractions, which are then used to implement
applications.

The language we will define in this paper is a
functional language, called Bi-X Core, which is a
first-order λ-calculus extended with two structured
data types, tuple and variant. In order to make
Bi-X Core a bidirectional language, we need to de-

日本ソフトウェア科学会第 24回大会（2007年度）論文集 2

Bi-X Core

 A User-Friendly
Functional Language

Data Types,
Functions

Data Types,
Functions...

Domain-1 Domain-n

Figure 1: Framework of Using Bi-X Core

fine the bidirectional semantics for each of its con-
structs. Bi-X Core is not designed as a language for
programmers. It aims to provide a foundation to
interpret other user-friendely general-purpose func-
tional languages.

In this paper we give a way to define bidirec-
tional semantics for a general-purpose functional
language. This is the contribution of this paper.

The rest of this paper is organized as follows. Sec-
tion 2 gives the framework of using Bi-X Core to de-
fine bidirectional applications. Section 3 defines the
bidirectional semantics of Bi-X Core. Section 4 in-
troduces a functional language with more syntactic
sugar that can be interpreted by Bi-X Core. With
the help of this user-friendly language, Section 5
gives several bidirectional applications without us-
ing domain-specific language. Section 6 discusses
the related work and Section 7 concludes the pa-
per.

2 Framework for General-Purpose

Bidirectional Transformation

Figure 1 shows the framework of using Bi-X Core
to implement bidirectional transformation in dif-
ferent domains. For ease of programming, Bi-X
Core is generally wrapped by another user-friendly
functional language with more syntactic sugar. For
example, this user-friendly language can have the
same syntax as Haskell or OCaml.

Each domain consists of some data types to de-
scribe the data structure used in this domain and

v ::= n | (vi∈1..n
i)u | < l, v >u

u ::= non | mod | ins | del
e ::= x | n | let f(x) = e′ in e | f(e)

| (ei∈1..n
i) | e.i | < l, e >

| case e of < li, xi > [fi] => ei∈1..n
i

Figure 2: Syntax of Bi-X Core

some functions to define a set of abstractions spe-
cific to this domain. For example, for bidirectional
XML transformation, the data type can be a tree
representing XML elements, and the functions in-
clude those for getting or setting the element tags,
getting or setting the element contents, and so on.

3 Bi-X Core and Its Bidirectional

Semantics

The syntax of Bi-X Core is given in Figure 2. An
expression e in this language can be a variable, an
integer, an expression with a local function decla-
ration, a function application, or an expression for
constructing or deconstructing tuples or variants.
All values in Bi-X Core are annotated with the up-
dating status u: non for the original values, mod for
the values that have been modified, del for values to
be deleted and ins for newly inserted values. Each
variant expression or value has a label l, which is
used by the case expression to classify the value in
a variant. In this and the next section, the notation
�i∈1..n

i is used to indicate the syntax object � can
appear zero or more times. In the following, we will
define the bidirectional semantics of Bi-X Core in
the form of big-step operational semantics.

3.1 Notations

There are two judgments used to define the bidi-
rectional semantics for Bi-X Core. The first judg-
ment is given below, used for forward semantics.

D; C � e ⇒ v

which means the expression e evaluates to the value
v under the function-declaration context D and the
variable-binding context C.

日本ソフトウェア科学会第 24回大会（2007年度）論文集 3

The second judgment is for backward semantics,
with the following form.

D; E; v � e ⇒ E′

which means under the contexts D, E and the up-
dated value v, backward execution of e will generate
a new context E′. The context E (and E′) maps
variables to pairs of values, each of which consists
of the original value and the updated value for the
bound variable.

The backward execution of some expressions need
to invoke forward execution of their subexpressions.
At this time, we need a context C, which can be
built from E in the current backward execution by
keeping only the first component of the value for
each bound variable. This operation is written as
E.1.

An empty context is represented by a dot “.”.
Two contexts C1 and C2 (or a context C and a
variable binding x �→ v) can be concatenated into
a new context, written as C1, C2 (or C, x �→ v).
Concatenations for contexts E and D are also rep-
resented in this way.

3.2 Bidirectional Semantics

We will define the bidirectional semantics for each
form of expression. In this section, we only consider
updated values that are modified or deleted.

The bidirectional semantics of a variable x is de-
fined by the following two rules. The forward exe-
cution returns the value of the most recent variable
x; the backward execution updates the value of x

by merging updates made to its different replicas.
This expression corresponds to the variable refer-
ence combinator in [6]. The detailed definition of
mg operator is omitted in this paper.

C = C1, x �→ v, C2 x /∈ Dom(C2)
D; C � x ⇒ v

x /∈ Dom(E2) E′ = E1, x �→ (v1, mg(v2, v)), E2

D; E1, x �→ (v1, v2), E2; v � x ⇒ E′

The bidirectional semantics of a constant n is sim-
ple. Forward execution returns this constant, and

the backward execution returns the current context.
A constant is not allowed to change.

D; C � n ⇒ nori D; E; nori � n ⇒ E

For an expression with a local function declara-
tion, let f(x) = e′ in e, we first append this func-
tion declaration to the rear of the current context
D, and then evaluate the scope expression in for-
ward or backward directions.

D, f(x) = e′; C � e ⇒ v

D; C � let f(x) = e′ in e ⇒ v

D, f(x) = e′; E; v � e ⇒ E′

D; E; v � let f(x) = e′ in e ⇒ E′

The expression f(e) has a forward semantics same
as the usual function applications, executing the
argument e first, and then executing the function
body with the function parameter bound to the
value of e. Its backward semantics is defined by ex-
ecuting the function body first and then executing
the argument e with the updated value generated
by the backward execution of function body. This
way of defining bidirectional function calls is also
used in [6].

D = D1, f(x) = e′, D2 f /∈ Dom(D2)
D; C � e ⇒ v D; C, x �→ v � e′ ⇒ v′

D; C � f(e) ⇒ v′

D = D1, f(x) = e′, D2 f /∈ Dom(D2)
D; E.1 � e ⇒ v′

D; E, x �→ (v′, v′); v � e′ ⇒ E′, x �→ (v′, v′′)
D; E′; v′′ � e ⇒ E′′

D; E; v � f(e) ⇒ E′′

The rest of expressions are related to construct
and deconstruct tuples and variants. They are the
main constructs in Bi-X Core to represent other
data structures, such as trees or graphs.

The expression (ei∈1..n
i) is to construct tuples in

its forward execution by executing each subexpres-
sion ei, which generates the ith tuple component.
In its backward execution, all subexpressions will
be executed backwardly one by one to get an envi-
ronment that reflects all updates made to all com-
ponents in the updated tuple.

日本ソフトウェア科学会第 24回大会（2007年度）論文集 4

D; C � ei ⇒ vi (i ∈ 1..n)

D; C � (ei∈1..n
i) ⇒ (vi∈1..n

i)ori

D; E; v1 � e1 ⇒ E1

...

D; En−1; vn � en ⇒ En

D; E; (vi∈1..n
i)u � (ei∈1..n

i) ⇒ En

The expression e.i is to extract the ith compo-
nent of the tuple returned by e in its forward exe-
cution. And in the backward execution, this tuple
is updated by replacing its ith component with the
updated component v, and then the updated tuple
will be used by e to get an updated context.

D; C � e ⇒ (vi∈1..n
i)ori

D; C � e.i ⇒ vi

D; E.1 � e ⇒ (vi∈1..n
i)ori

D; E; (vh∈1..i−1
h , v, vj∈i+1..n

j)ori � e ⇒ E′

D; E; v � e.i ⇒ E′

The expression < l, e > is to construct a labeled
value. The value is the result of executing e for-
wardly, with the label l. Note that the label cannot
be changed in the updated value in the backward
execution.

D; C � e ⇒ v

D; C� < l, e >⇒< l, v >ori

D; E; v � e ⇒ E′

D; E; < l, v >u � < l, e >⇒ E′

The case expression distinguishes the label on
the labeled value returned by e and for each pos-
sible label li, there is a corresponding branch <

li, xi > [fi] => ei. If a branch maches, then the
corresponding expression ei will be executed with
xi bound to this value without label, and moreover
the function fi must return true, which represents
the variant < true, () >, on the resulting value of
ei. In the backward execution, the variable binding
in this expression is processed as that in function
applications.

D; C � e ⇒< li, vi >ori

D; C, xi → vi � ei ⇒ v

D; . � fi(v) ⇒ true

D; C � case e of < li, xi > [fi] => ei∈1..n
i ⇒ v

D; E.1 � e ⇒< li, vi >ori

D; E, xi → (vi, vi); v � ei ⇒ E′, xi → (vi, v
′
i)

D; E′; < li, v
′
i >ori �e ⇒ E′′

D; E; v � case e of < li, xi > [fi] => ei∈1..n
i ⇒ E′′

3.3 Discussion of Insertion

It is hard to put inserted values back since there
are no corresponding original source values available
to guide the construction of updated source values.
In order to to process insertions, we first add a spe-
cial value Ω to the syntax of values, which means a
non-existing value. This special value is also used in
[3]. The semantics of some deconstructing expres-
sions have to be extended to consider this special
value. For example, the semantics of case expres-
sion on variants is extended by the following two
rules. Note that the condition function f is used to
choose branch in the backward execution.

D; C � e ⇒ Ω

D; C � case e of < li, xi > [fi] => ei∈1..n
i ⇒ Ω

D; E.1 � e ⇒ Ω D; . � fi(v) = true

D; E, xi → (Ω, Ω); v � ei ⇒ E′, xi → (Ω, v′i)
D; E′; < li, v

′
i >ins �e ⇒ E′′

D; E; v � case e of < li, xi > [fi] => ei∈1..n
i ⇒ E′′

Another point we noticed for insertions is that
a new value can be inserted into a structure only
if this value can appear in this structure regularly.
For example, an integer list contains the regular
occurrences of integers, so a new integer can be in-
serted into this list. To verify our ideas, we add into
Bi-X Core some introduction forms and elimination
forms about list. In particular, the construct map

is directly responsible for processing inserted ele-
ments, whose backward semantics for insertion is
defined as the following rule, which depends on an-
other auxiliary rule, also shown below.

D; E.1 � e ⇒ v

D; E; v1♦f, e ⇒ E′

D; E′; v2 � map f e ⇒ E′′

D; E; consins v1 v2 � map f e ⇒ E′′

日本ソフトウェア科学会第 24回大会（2007年度）論文集 5

Prog ::= TopDecl i∈1..n
i

TopDecl ::= TypeDecl | FDecl
FDecl ::= FunDecl | FunSigDecl
TypeDecl ::= data DName Vari∈1..n

i = Contrs
Constrs ::= CName Tyi∈1..n

i

| CName Tyi∈1..n
i Bar Constrs

Ty ::= Int | Char | Bool
[Ty] | (Ty i∈1..n

i)
| DName | {Lbli : Ty i∈1..n

i }
FunDecl ::= FName Pati∈1..n

i = FunBody
FunBody ::= Exp | {FName} Exp

| Exp where FDecl i∈1..n
i

| {FName} Exp where FDecl i∈1..n
i

Pat ::= Var | | [] | Pat ;Pat
| Constr Pati∈1..n

i

| (Pati∈1..n
i) | {Lbli = Pat i∈1..n

i }
Exp ::= Var | n | c | True | False

| let FunDecl i∈1..n
i in Exp

| Name Expi∈1..n
i

| {Lbli = Expi∈1..n
i } | Exp.Lbl

| if Exp then Exp else Exp
| (Expi∈1..n

i) | [Expi∈1..n
i]

| Exp :Exp | map Name Exp
| case Exp of Branch i∈1..n

i

Branch ::= Pat => Exp | Pat {Name} => Exp
FunSigDecl ::= Name :: FunTy
FunTy ::= Ty | Ty → FunTy
Bar ::= |

Figure 3: Syntax of A User-Friendly Language

D = D1, f(x) = e′, D2 f �∈ Dom(D2)
D; E, x �→ (Ω, Ω); v � e′ ⇒ E′, x �→ (Ω, v′)
D; E′; v′ � e ⇒ E′′

D; E; v♦f, e ⇒ E′′

4 A User-Friendly Functional Lan-

guage

Figure 3 shows a general-purpose functional lan-
guage that can be interpreted with Bi-X Core and
has more syntactic sugar. A program of this lan-
guage is composed of a list of data type declara-
tions, function declarations and function signature
declarations, at its top level. The design of this lan-
guage get much inspired by the syntax of Haskell
and OCaml. However, compared with these pri-
mary functional languages, this language needs the
following syntactic option to support backward ex-
ecution: overloaded functions and branches in case
expressions might be annotated with guards if they

are expected to accept inserted values in backward
execution. The guards take the form of {Name},
where Name is a boolean-valued function, and this
function must hold on the value returned by the
guarded function or case branch. These guards will
be translated into the guards of case expressions
in Bi-X Core, which will help determine which case
branch will be chosen to process an inserted value.
If programmers do not care the guards on functions
or case branches, then they can omit them when
programming.

In comparison with other bidirectional transfor-
mation languages, this user-friendly language allows
programmers to define their own data types. This
is the feature provided by Bi-X Core . We will see
several examples of this language in the next sec-
tion. Note that list type [Ty] and the function map

are pre-defined in this language. As discussed in
the previous section, they are specially treated to
process inserted values.

The semantics of this user-friendly language is de-
fined by translating it into Bi-X Core. This transla-
tion is quite similar to the translation, for instance,
from Haskell into Haskell kernel [9], or from Stan-
dard ML to λ-calculus [10]. This is an ongoing
work, and we will not give its details here.

5 Applications of Bidirectional

Transformation

In this section, we will demonstrate Bi-X Core
through several examples with the help of the user-
friendly language introduced in the previous sec-
tion. These examples need different data structures,
which can be defined as algebraic data types by us-
ing the keyword data in the user-friendly language.
Some examples below need the type String, which
can be defined as [Char]. For convenience, we write
a string as, for instance, “abc”, rather than [‘a’, ‘b’,
‘c’].

5.1 Bidirectional XML Transformation

This example demonstrates how to define XML
transformation with Bi-X Core. The data types for
representing XML documents and some functions

日本ソフトウェア科学会第 24回大会（2007年度）論文集 6

data Element = Elm String [Cont]

data Text = Txt String

data Cont = ElmCont Element | TxtCont Text

getTag:: Element -> String

getTag Elm tag _ = tag

setTag:: String -> Element -> Element

setTag newtag Elm tag cont

= Elm newtag cont

getCont:: Element -> [Cont]

getCont Elm _ cont = cont

setCont:: [Cont] -> Element -> Element

setCont newcont Elm tag cont

= Elm newtag newcont

getContElm:: Content -> Element

getContElm ElmCont elm = elm

getContElm TxtCont str = Elm "null" []

getContTxt:: Content -> Text

getContTxt ElmCont elm = Txt "null"

getContTxt TxtCont txt = txt

Figure 4: Data Types and Functions for XML
Transformation

to process them are given in Figure 4.
Suppose we have the following XML data includ-

ing two elements.

<book>

<title>Algorithm</title>

<price>38</price>

</book>

<journal>

<title>Cooking</title>

<price>10</price>

</journal>

Using the data types and functions in Figure 4,
users can represent the above data and write a
transformation to extract all book or journal titles,
as shown in Figure 5.

5.2 Other Applications

Following the way of defining bidirectional XML
transformation, we can implement a bidirectional
code query system [8] by first defining the data
structure to represent the abstract syntax tree of
Java programs, and then for each type of data, im-
plementing suitable processing functions. An an ex-

[

Element "book" [

ElmCont

Elm "title" [TxtCont Txt "Algorithm"],

ElmCont

Elm "price" [TxtCont Txt "38"]],

Element "magazine" [

ElmCont

Elm "title" [TxtCont Txt "Cooking"],

ElemCont

Elm "price" [TxtCont Txt "10"]]

]

allTitles :: [Element] -> [Element]

allTitles bjs = map title bjs

where

title::Element -> Element

title elm = case getContent elm

of cont:_ => getContElm cont

Figure 5: An Example of XML transformation

ample, for Java classes, the functions for getting and
setting methods are needed.

Another example is to define bidirectional model
transformation system [2]. The idea is still similar,
first defining the data structure to represent soft-
ware models, and then defining functions to pro-
cess the data of each type. For example, for each
model entity, there should be functions for getting
or setting its attributes by names.

6 Related Work

Foster et al. [3] first propose the way of defining
bidirectional language by giving each language con-
struct bidirectional semantics. But the language in
[3] includes only a collection of domain-specific com-
binators. It is not clear how expressive these com-
binators could be, and what combinators should be
added into their language to increase its expressive-
ness. In contrast, Bi-X Core is a general-purpose
functional language. Hence, by comparing it with
other functional languages, we can know easily its
expressiveness and what new constructs should be
added for more expressiveness. For example, it can
be extended with monad as that in Haskell, or ref-
erence as that in OCaml.

The language in [6] has considered bidirectional
variable bindings and function calls, but that lan-

日本ソフトウェア科学会第 24回大会（2007年度）論文集 7

guage does not allow programmers to define their
own data types. Bi-X Core also takes the same
way to define the bidirectional semantics of vari-
able bindings and function calls, but it does this for
a general-purpose language, and moreover it allows
user-defined data types.

Some other related work include the injective lan-
guage in [11] and the reversible language in [12].
These languages can only express injective func-
tions, so that their programs can be inverted. Bi-X
Core can express functions not necessarily injective,
with the cost that the backward execution may fail
due to, for instance, conflicting updates.

7 Conclusion

In this paper, we described a general-purpose
bidirectional transformation language, Bi-X Core,
which is a first-order λ-calculus extended with two
structured data types, tuple and variant. With this
language, there is no need to design new domain-
specific languages for new domains that want bidi-
rectional transformation. By designing Bi-X Core,
we showed a way of how to define bidirectional
semantics for general-purpose functional language.
Bi-X Core is still under development. Some appli-
cations in different domains are being developed to
validate its usefulness.

8 Acknowledgment

This work is supported by Comprehensive De-
velopment of e-Society Foundation Software Pro-
gram of the Ministry of Education, Culture, Sports,
Science and Technology, Japan. We thank Izumi
Mihashi and Kiminori Matsuzaki for providing the
helpful comments and LaTeX tips.

References
[1] Harmony Project. http://www.seas.upenn.edu/ har-

mony.

[2] Yingfei Xiong, Dongxi Liu, Zhenjiang Hu, and
Masato Takeichi. A bidirectional transformation
approach towards automatic model synchroniza-
tion. In Participants Workshop of GTTSE Sum-
mer School, pages 359–360, 2007.

[3] J. Nathan Foster, Michael B. Greenwald,
Jonathan T. Moore, Benjamin C. Pierce, and

Alan Schmitt. Combinators for bi-directional tree
transformations: a linguistic approach to the view
update problem. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 233–246. ACM
Press, 2005.

[4] Zhenjiang Hu, Shin-Cheng Mu, and Masato Take-
ichi. A programmable editor for developing struc-
tured documents based on bidirectional trans-
formations. In Proceedings of the 2004 ACM
SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, 2004.

[5] Dongxi Liu, Zhenjiang Hu, Masato Takeichi,
Kazuhiko Kakehi, and Hao Wang. A java library
for bidirectional XML transformation. JSSST
Computer Software, 24(2):164–177, 2007.

[6] Dongxi Liu, Zhenjiang Hu, and Masato Takeichi.
Bidirectional interpretation of xquery. In PEPM
’07: Proceedings of the 2007 ACM SIGPLAN
workshop on Partial evaluation and semantics-
based program manipulation, pages 21–30. ACM
Press, 2007.

[7] Aaron Bohannon, Jeffrey A. Vaughan, and Ben-
jamin C. Pierce. Relational lenses: A language
for updateable views. In Proceedings of the 25th
ACM symposium on Principles of Database Sys-
tems, 2006.

[8] Dongxi Liu, Yingfei Xiong, Zhenjiang Hu, and
Masato Takeichi. Bi-CQ: A bidirectional code
query language. In Participants Workshop of
GTTSE Summer School, pages 348–349, 2007.

[9] Haskell 98 Language and Libraries, 2002.
http://haskell.org/onlinereport/index.html.

[10] Robert Harper and Chris Stone. A type-theoretic
interpretation of Standard ML. In Gordon Plotkin,
Colin Stirling, and Mads Tofte, editors, Proof,
Language, and Interaction: Essays in Honor of
Robin Milner. MIT Press, 2000.

[11] Shin-Cheng Mu, Zhenjiang Hu, and Masato Take-
ichi. An algebraic approach to bi-directional up-
dating. In APLAS, volume 3302, pages 2–20, 2004.

[12] Tetsuo Yokoyama and Robert Glück. A re-
versible programming language and its invertible
self-interpreter. In PEPM ’07: Proceedings of the
2007 ACM SIGPLAN symposium on Partial eval-
uation and semantics-based program manipulation,
pages 144–153. ACM Press, 2007.

