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Associativity is one of the most important properties in parallel computation, for example, associativity

of list concatenation plays an important role in parallel computation for lists. However, few studies

have been devoted to the formalization in the context of parallel computation on trees. In this paper,

we observe flexible division of binary trees in which a tree can be divided at any node rather than the

root, and formalize a new property called tree associativity. We apply this tree-version associativity to

the parallel implementation of several computational patterns on trees.

1 Introduction

Associativity is one of the most important prop-
erties in parallel computation. In parallel compu-
tation on lists, the associativity of list concatena-
tion enables us to divide a list into arbitrary sub-
lists, where the divide-and-conquer approach can be
naturally applied. Many researchers have devoted
themselves to the development of parallel programs
based on the associativity [6,10,18,20], and to the
derivation of associative operators [5,8].

In spite of the success of the associativity on
lists, few studies have been devoted to formaliz-
ing associativity in the context of parallel compu-
tation on trees. Trees are important data struc-
tures often used to represent structured data such
as XML trees, but development of efficient parallel
programs for manipulating trees is a hard task due
to their ill-balanced structures.

Two major approaches to the parallel computa-
tion on trees are the simple divide-and-conquer ap-
proach and the tree-contraction approach. The sim-
ple divide-and-conquer approach of computing each
subtree independently is widely used, but it may be
inefficient if the tree is ill-balanced. This is caused
by insufficient flexibility in the division of trees, that
is, a tree can only be divided at the root node. Tree
contractions, first proposed by Miller and Reif [15],
are efficient parallel algorithms for trees of arbitrary

shapes. Though several studies have been done for

the tree contraction algorithms [1,2,7,12, 14, 19],
parallelism in the tree contraction algorithms has
not been clarified in relation to flexibility of tree
division.

In this paper, we propose a novel property held
on trees, namely tree associativity, and apply it to
the parallel computation on trees. We first observe
flexible division of trees in which a tree can be di-
vided at an arbitrary node rather than only the root
node, and then introduce a new concept of ternary-
tree representation of trees. Based on this ternary-
tree representation, we formalize the tree associa-
tivity, a key property in the parallel computation
for trees. We develop efficient parallel implementa-
tions of several tree manipulations in a divide-and-
conquer manner on the ternary-tree representation
under the condition of tree associativity.

The paper is organized as follows. In Section 2
we review notational conventions and introduce a
general form of tree manipulations called tree ho-
momorphism, and in Section 3 we review the role
of associativity in the parallel computation on lists.
In Section 4, based on the observation of flexible
tree division we propose the ternary-tree represen-
tation and the tree associativity. We then discuss
a parallel implementation of tree homomorphisms
under tree associativity in Section 5. We remark on
related work in Section 6, and conclude the paper

in Section 7.
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2 Preliminaries
2.1 Notations
In this paper, we borrow the notations of
Haskell [17].

important notations and datatypes.

In the following, we introduce

Functions and Operators

Function application is denoted by a space and the
argument may be written without brackets. Thus
Functions are curried, and the
Thus
f abmeans (f a) b. The function application binds

f a means f(a).

function application associates to the left.

stronger than any other operator, so f a ® b means
(f a)® b, but not f (a ®b). Function composition
is denoted by o. Sometimes we do not care about
actual value of a variable, and in such a case we
may denote the value as _.

Infix binary operators will be denoted by @ and
® as well as arithmetic operators. In addition to
arithmetic operations, we use infix operator | to
denote the max computation that returns the bigger

of the two inputs.

Datatypes

A (nonempty join) list is constructed from a single
value or by concatenating two lists. The datatype
for lists where every element has type « is defined

as follows.

data JList a = Sing «
| Concat (JList «r) (JList )

We may use abbreviations, [z] for Sing z, and zs
ys for Concat xzs ys. Note that - is an associative
operator.

A binary tree is a tree whose internal nodes have
exactly two children. The datatype for binary trees
where every leaf has type « and every internal node

has type (3 is defined as follows.

data BT o 8 =BL «
| BN 8 (BT « 8) (BT a )
Function root; takes a binary tree and returns its
root node.

root, (BL a)
rooty, (BN1br)="0b

=a

2.2 Tree Homomorphisms

Once a (recursive) datatype is specified, a natural
recursive functions on it can be defined along with
the specification of the datatype. For binary trees,
we consider the following recursive function called

tree homomorphism [21,22].

Definition 1 (Tree Homomorphism) Let k;
Function h is called

tree homomorphism, if it is defined in the following

and k, be given functions.

recursive form.

h(BLa) =ka
h(BNIbr)=Fk, (hl)b(hr)

We may denote the tree homomorphism above as
h = ([kl, knDb O

An example of tree homomorphism is function

height that computes the height of a tree.

height (BLa) =1
height (BN 1 b 1) =1+ (height 1 1 height r)

This function is indeed a tree homomorphism
height = (height,, height,,]), where height; a = 1
and height,, Lbr=14+(117r).

Computations on trees may return trees rather
than basic values, and for such computations we
define the following two tree accumulations [22]. In
fact these tree accumulations can be formalized as

special instances of the tree homomorphisms®.

Definition 2 Let k; and k, be given functions.
Function h" is called upwards accumulation, if it

is defined in the following recursive form.

" (BL a) = BL (k a)
Wt (BN b 7)
=letl'!=n%1; v =h%r
in BN I’ (k, (rooty I') b (rooty 7)) ' U

Definition 3 Let ¢; and g, be given functions.
Function h? is called downwards accumulation, if
it is defined in the following recursive form with an

additional parameter c.

h?c (BLa)=BL¢c
htc (BN 1br)
= BN (h? (g cb) ) ¢ (h? (g, cb)7) D

1The downwards accumulation can be formalized as a
higher-order tree homomorphism.
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Fig. 1: Binary-tree representation of dividing a list.

The tree homomorphisms and the tree accumu-
lations have been studied as basic computational
See [13]

for examples developed with these functions.

patterns on trees (called tree skeletons).

3 Associativity for Parallel Compu-
tation on Lists

Associativity is one of the most important algebraic
properties in parallel programming. In particular
for lists, associativity of the list concatenation, +-,
enables us to divide a list into smaller sublists and
compute them in parallel. In this section, we review
how the associativity of the list concatenation works
in the context of parallel programming for lists.
One approach to implementing parallel pro-
grams is the divide-and-conquer, in which a list is
divided recursively. For simplicity, let the number
of elements of the input list be a power of two, and
under this condition we can divide a list into two
halves recursively. We can formalize the division of
lists as a binary-tree structure generated by func-
tion list2bt defined as follows. The resulting binary

tree is a leaf-labeled tree.

list2bt [a] =BLa

list2bt (I +r) = BN (list2bt 1) _ (list2bt r)

Function bt2list that restores the list structure from

the binary-tree representation is defined as follows.

bt2list (BL a) = [a]
bt2list (BN I _ r) = bt2list 1 H bt2list r

Here equation bt2list o list2bt = id holds. Figure 1
shows an example of the division of a list.
Computation of divide-and-conquer parallel

programs for lists can be performed along the

bottom-up o
v ™
)ﬁ\ :
% :>

top-down

Fig. 2: Mlustration of two sweeps for scans.

binary-tree representation of lists. For example, let
k be a given function and @& be an associative op-

erator, list homomorphism (k, ¢]); defined as

(k, @) [al =ka
(k@) (l4r) =kl & (ka)r

can be implemented as a tree homomorphism on

the binary-tree representation as follows.

(k, @) = (ki, kn)p o list2bt
where k; a =ka

kol _r=1®dr

Since the computations for the two subtrees of
a node are independent of each other, this naive
divide-and-conquer program on the binary-tree rep-
resentation computes the list homomorphism effi-
ciently in parallel.

In the following, we will see a parallel imple-
mentation of more involved computation for lists
called scans or prefix sums. A well-known parallel
implementation of scans was developed by Kogge
and Stone [11], and it consists of two steps. With
the binary-tree representation of lists, we can for-
malize the implementation of scans as two sweeps
on the representation: a bottom-up sweep followed
by a top-down sweep. An intuitive definition of the
two sweeps are given in Fig. 2. Note that since
both sweeps are applied to the two subtrees inde-
pendently, we can implement a parallel program in

a naive divide-and-conquer style on the binary-tree
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representation. The parallel algorithm computes
scans in logarithmic time to the number of elements
of the list for the balanced binary-tree representa-
tion with its height being logarithmic to the number

of elements.

4 Ternary-Tree Representation and
Tree Associativity

One naive way to divide a binary tree is to divide
it at the root node into two subtrees, and based on
this division we can compute tree homomorphisms
in parallel in a divide-and-conquer way. Ill-balanced
tree structures, however, may spoil the parallelism,
and in the worst case the naive divide-and-conquer
programs may run as slow as sequential ones. The
problem is due to insufficient flexibility in dividing
a tree.

In this section we discuss flexible division of bi-
nary trees and formalize the parallelism in parallel
tree manipulations. We first propose to represent
the division of binary trees as a ternary tree, and
then formalize a novel property called tree associa-

tivity on this ternary-tree representation.

4.1 Division of Binary Trees and Ternary-

Tree Representation

Consider dividing a binary tree at any node instead
of just the root. Let x be a node in a binary tree,
we can divide the tree at node = into the following
three parts: the left subtree of z, the right subtree
of z, and the other nodes including x, as shown in
Fig. 3. We first define two keywords terminal node

and segment to discuss the division of binary trees.

Definition 4 (Terminal Node) = We call the
node at which a binary tree is divided (e.g., x in

Fig. 3) as terminal node. O

Definition 5 (Segment) We call a set of consec-

utive nodes as a segment. O

Different from a subtree, a segment may not have

all the descendants in the original tree. Note that

all the segments in this paper form binary trees.
In principle we may divide a binary tree at

any internal node, but in practice we should im-

Fig. 3: Dividing a binary tree into three segments

at a terminal node x.

Fig. 4: When segment S; has two terminal nodes x

and y, it has four child segments.

pose some conditions due to the non-linear struc-
ture of the tree. As seen in Fig. 4, when a segment
has k terminal nodes it has 2k child segments, and
such a segment with more than two children com-
plicates the handling of the global structure. Con-
sistent handling of the global structure of segments
requires the global structure be kept binary through
divisions, and therefore we restrict each segment to
have at most one terminal node. Under this restric-
tion each segment has zero or two child segments
and the global structure of the segments forms a
binary tree. Note that we can obtain at least one
division satisfying this restriction because dividing
a tree at the root node always satisfies the restric-
tion. The flexible division of binary trees yields a
lot of ternary-tree representations for a given binary
tree. For example, for the binary tree with seven
nodes in Fig. 3, there are five possible ternary-tree
representations.

We divide a binary tree recursively until each
segment consists of only one node. Since division of
a binary tree yields three segments, we represent the
recursive division of a binary tree as a ternary tree.
For each division of a segment, we insert a ternary
internal node and put the left-child segment to its
left child, the parent segment to its center child,
and the right-child segment to its right child, re-
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Fig. 5: Example of ternary-tree representation.

spectively. Figure 5 illustrates a ternary-tree repre-
sentation of a binary tree. A leaf in the ternary-tree
representation corresponds to a node in the original
binary tree, and a subtree in the ternary-tree rep-
resentation corresponds to a segment that appears
during the recursive division.

The ternary-tree representation should be de-
fined in such a way that the original binary-tree
structure can be restored. One naive way to achieve
this is to embed a pointer to the terminal node in
each internal node. This formalization with point-
ers, however, makes it hard to discuss the charac-
teristics of the ternary-tree representation. We ex-
amine another specification without pointers where
we associate one of the following labels into each

internal node.

e TNN (Ternary-Node-N, N in figures): The sub-
tree whose root node is labeled TNN represents
a segment with no terminal node of the previ-

ous division.

e TNL (Ternary-Node-L, L in figures): The sub-
tree whose root node is labeled TNL represents
a segment with a terminal node x of the previ-
ous division, and z is included in the left child

segment after dividing the segment.

e TNR (Ternary-Node-R, R in figures): The sub-
tree whose root node is labeled TNR represents
a segment with a terminal node z of the pre-
vious division, and z is included in the right

child segment after dividing the segment.

A terminal node corresponding to a previous divi-
sion must not be included in the parent segment
after dividing the segment, since the parent seg-
ment always has a terminal node at which the seg-

ment is divided. Because of the restriction that a

segment has at most one terminal node, the three
labels cover all the cases of the ternary-tree repre-
sentation.

We can find the terminal node on the ternary-
tree representation by using these labels. For a
given internal node, traversing the ternary tree from
its center child to the leaves by selecting recursively
left /right child at node TNL /TNR. For example, in
Fig. 5 the global binary tree is divided at node b,
which is given on the ternary-tree representation by
traversing from the center child of the root node to
the left child.

We define the type of ternary-tree representa-
tion for a binary tree of type (BT « 3) as follows.

dataTTapf =TLL «
| TLNg
| TNN(TTap) (TTaf)(TTap)
| TNL(TTag) (TTapB)(TTap)
| TNR(TTag) (TTapB)(TTap)

The first two constructors denote leaves of the
ternary-tree representation: TLL for a leaf that cor-
responds to a leaf in the original binary tree; TLN
for a leaf that corresponds to an internal node in
the original binary tree. The other three construc-
tors correspond to three labels of the internal nodes
of the ternary-tree representation.

Not all the ternary trees of the type above rep-
resent binary trees. Since the original binary tree
has no terminal node before division, the root of a
ternary tree should be TNN or TLL. Since a new
terminal node is included in the parent segment for
each division, and thus the center child of each in-
ternal node should be either TNL, TNR or TLN.
For an internal node labeled TNN, its left-child and
right-child segments do not have any terminal node,
and should be either TNN or TLL. For an internal
node labeled TNL, its left child segment has a ter-
minal node and thus the left child should be either
TNL, TNR or TLN, while the right child should be
labeled TNN or TLL. A node labeled TNR is sym-
metric to the node labeled TNL.

For a given correct ternary-tree representation,
we can restore the original binary tree using the

following function ¢t20t.
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Fig. 6: Tllustration of the equation TNN (TNN a b ¢) d e =425t TNN a (TNL b d ) c.

tt2bt =TT a B —BT ap
ttobt t = tt2bt’ t _ _

tt2bt’ (TLL a) — _=BLa
tt2bt’ (TLNb) 2y =BNaby
tt2bt’ (TNNInr) _ _

= tt2bt' n (tt2bt’ 1 _ ) (12’ r _ )
tt2bt’ (TNLinr)zy

= tt2bt' n (tt2bt' 1 x y) (tt2bt' r _ )
tt2bt’ (TNRinr) zy

= tt2bt" n (tt2bt’ 1 _ _) (120" r x y)

In the definition above, the second and the third
arguments of the function #t2bt’ represent the left
and the right subtrees of the terminal node. Since
the segments corresponding to TLL and TNN have
no terminal node by definition, the arguments are
don’t-care values for them and in particular for the
root node.

We briefly remark on the balancing property of

the ternary-tree representation.

Lemma 1 For any given binary tree of N nodes,
there exist a balanced ternary-tree representation of
it whose height is O(log N).

Proof Sketch: A balanced ternary-tree represen-
tation is given by simulating the tree contraction
algorithm proposed by Abrahamson et al. [1] using
contracting operations that assign one of the three
labels. O

4.2 'Tree Associativity

In parallel programming, associativity enables us to
change the order of local computations to perform
then in parallel. As seen in Section 3, associativ-
ity of the list concatenation, , plays an impor-
tant role in parallel programming on lists by pro-
viding flexible division of lists. We have introduced

the ternary-tree representation for the flexible di-

vision of binary trees, and now we formalize the
tree-version associativity based on the ternary-tree
representation.

On the ternary-tree representation, changing
the order of local computation corresponds to swap-
ping an internal node with its parent. As our run-
ning example, consider a ternary-tree representa-
tion whose root node is TNN and its left child is
also TNN (Fig. 6, left). Let a, b, ¢, d, and e denote

subtrees, then we can denote such a tree as follows.
TNN (TNNabc) de

Note that two segments corresponding to b and d
have a terminal node. This ternary tree represents
a binary tree in which the root segment d has two
child segments b on the left and e on the right,
and the segment b has two child segments a on the
left and ¢ on the right (Fig. 6, center). The above
ternary-tree representation can be obtained by the
division at the terminal node in d followed by the
division at the terminal node in b. In fact, we can
swap the order of divisions for this binary tree, that
is, we divide the tree at the terminal node in b and
then divide the parent segment at the terminal node
in d, which yields the following ternary-tree repre-

sentation (Fig. 6, right).
TNNa (TNL bde) ¢

Since the two ternary trees represent the same bi-
nary tree, the following equation should hold. We
denote a =y0p; b if two ternary trees a and b repre-

sent the same binary tree.
TNN (TNNa b ¢) d e =42t TNNa (TNL b de) ¢

By examining the possible local structures of
ternary-tree representations in the same way, we

obtain five more equations.
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Fig. 7: The six equations of local transformations. A dot in a subtree represents the terminal node.

TNNab (TNNcde) =uo TNNe (TNRa b d) e
TNL (TNL abc) d e =uop TNL a (TNL b d e)
TNR ab (TNL ¢ d €) =guop TNL ¢ (TNR a b d)
TNL (TNRabc)de =y TNRa (TNL bde) c
TNRab (TNRcde) =uo TNR e (TNRa b d) e

c
€

We have in total six equations, which are illus-
trated in Fig. 7. Note that, we do not have equa-
tions for two forms, (TNL a b (TNN ¢ d e)) and
(TNR (TNN @ b ¢) d e), due to the restriction that
a segment must not have more than one terminal
node.

The six equations represent local transforma-
We confirm that the lo-

cal transformations have enough expressiveness by

tions of ternary trees.

showing that for given two ternary trees represent-
ing the same binary tree we can transform one to
another using the six equations above. Before dis-
cussing the local transformations in more details,
we define a special form of the ternary-tree repre-

sentation.

Definition 6 A ternary-tree representation is said
to be plain if it consists of only the constructors
TLL, TLN, and TNN. ]

In other words, a plain ternary-tree representation
does not have any constructor TNL or TNR.
Firstly, we show the one-to-one correspondence

between binary trees and plain ternary trees.
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Lemma 2 For a given binary tree, there is exactly
one plain ternary-tree representation of it.
Proof: As stated in Section 4.1, the center child of
an internal node must be labeled as either TNL,
TNR, or TLN, since the corresponding segment
must have a terminal node. Therefore, the center
child of a plain ternary tree is TLN, which repre-
sents the division at the root node. Since the root
node is unique in a tree, there is at most one plain
ternary tree representing a binary tree.

Next, we show that for any binary tree there is
a corresponding plain ternary tree. We can define
function bt2plain that derives the plain ternary-tree
representation from a binary tree by recursive divi-

sion at the root node.

bt2plain (BL a) = TLL a
bt2plain (BN 1 b r)
= TNN (bt2plain 1) (TLN b) (bt2plain r)

This function returns a plain ternary-tree represen-
tation since there are only three constructors TLL,
TNN, and TLN in the function body. O

Secondly, we prove that we can transform a
valid ternary tree into the plain ternary tree that
represents the same binary tree by applying the lo-

cal transformations.

Lemma 3 A wvalid ternary tree can be transformed
into a plain ternary tree by the following two equa-

tions.

TNN (TNNa b ¢) d e =gz TNNa (TNL b d e) ¢
TNNab (TNN ¢ d e) =gz TNN ¢ (TNR a b d) e

Proof: A single top-down algorithm with the fol-

lowing operations achieves the transformation.
(a) If the root node is a leaf, do nothing.

(b) If the center child of the root node is a leaf,
apply the operations to the left and the right

children of the root node.

If the center child of the root node is labeled
as TNL, apply the first equation from right to
left, and then apply the operations to the new

root node again.

(d) If the center child of the root node is labeled as
TNR, apply the second equation from right to
left, and then apply the operations to the new

root node again.

Termination can be proved by decrease of the num-
bers of TNL and TNR, and the size of the ternary
tree. By the operations (c) and (d), the numbers of
TNL and TNR decrease by one, respectively. The
operation (b) does not reduce the numbers of TNL
and TNR, but it reduces the size of the ternary tree.
Correctness of the algorithm follows from the cor-

rectness of the two equations. O

Given two ternary-tree representation for the
same binary tree, we can transform one to the other

as the following lemma states.

Lemma 4 Given two ternary trees representing the
same binary tree, one tree can be transformed into
the other by the two equations in Lemma 3.
Proof: The lemma follows from Lemmas 2 and 3.
O

The Lemmas 3 and 4 also point out that the first
two equations suffice for transforming ternary trees.
In fact, among the six equations on the ternary-tree
representation, the latter four equations can be de-
rived from the former two equations. Generalizing
TNN, TNL, and TNR to three functions g, gi, gr,

we obtain the following lemma.

Lemma 5 Let g, be a function satisfying the fol-

lowing proposition,
Ve, zignaryz=gnay z=y=y

and g; and g, be functions satisfying the following

two equations for any values a, b, ¢, d, and e.
gn (gnabc)de=g,a(ggbde)c
gnab(gncde)=gnc(grabd)e

Then, the following four equations hold.

g (ggabeyde=g a(gbde)c
grab(gcde)=gic(grabd

) e
g (grabec)de=g.-a(ggbde)c
grab(g-cde)=g.c(grabd) e
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Proof: We only show the proof for the first equa-
tion of interest. We prove the equation by trans-
forming expression (g, = (g; (g1 a b ¢) d e) y), in

which z and y are arbitrary values.

gnz (g (gabe)de)y
=gn (gnz(qabe)y)de
=0n (gn (gnray)bc)de
=gn(gnzay) (@bde)c
=gz (galgbde)c)y
The equation above holds for any values x and y,

and thus the equation for the second arguments

g(grabeyde=gia(ggbde)c

also holds by the first proposition.
The other three equations can be proved in the

same manner. O

This lemma states that the former two equa-
tions in six equations are essential in the trans-
formation among ternary-tree representations. We
therefore define the tree-version associativity with

the two equations as follows.

Definition 7 (Tree Associativity)  Functions
gn, g1, and g, are tree associative, if the following

two equations hold for any a, b, ¢, d, and e.

gn (gnabe)yde=gpa(gbde)c

gnab(gncde)=gnc(grabd)e o

Lemma 6 The three constructors of the ternary-
tree representation, TNN, TNL and TNR, are tree
associative modulo function tt2bt.

Proof: The constructors satisfy the following two
equations of tree associativity if we use =405 in-

stead of =.

5 Implementation of Tree Homo-
morphisms

In this section we develop an implementation of tree
homomorphisms on the ternary-tree representation.
First, we specify a condition for implementing tree
homomorphisms on the ternary-tree representation,
where tree associativity plays an important role.
We then develop implementations of tree accumula-
tions. The implementations are very similar to that

of scan on the binary-tree representation of lists.

5.1 Conditions for Implementing Tree Ho-

momorphisms

We define a natural computational pattern on the

ternary-tree representation.

Definition 8 (Ternary-Tree Homomorphism)
Let k] and k], be given functions, and ¢}, g;, and
g, be tree associative functions. Function A’ is
called ternary-tree homomorphism, if it is defined

on ternary trees as follows.

B (TLL a) =kl a
W(TLND) =K, b
B (TNNIn7r)=g, (R 1) (h n) (W )
R (TNLinr)=g (K1) (F n) (K r)
B (TNRiInr)y=g. (K1) (R n) (W r)

We may denote a ternary-tree homomorphism as
h/ = ([k27k;zag;zagllvg;~])t O

As we have seen in the previous section, the
ternary-tree representation provides great flexibil-
ity in terms of the order of local computations, and
the flexibility supports parallel computation on the
ternary-tree representation. However, the flexibil-
ity of the ternary-tree representation imposes some
conditions on the implementation of tree homomor-
phisms. In the following, we specify the conditions
for implementing tree homomorphism (k;, k,])» by
ternary-tree homomorphism (%}, k,,, g.,. 97, 9,.)¢-

The first condition is that the ternary-tree ho-
momorphism should simulate the tree homomor-
phism on the plain ternary trees. We can formalize
this condition by induction on the structure of bi-
nary trees. For the base case, i.e., (BL a), the results
of the tree homomorphism and the ternary-tree ho-

momorphism are given as follows.
([kl,kn])b (BL a) = kl a

(k75 ks g 91, 90 De (bt2plain (BL a))
= (K}, ks 90 915 9:De (TLL @)
=kl a

From these calculations, we have k; a = k| a. For
inductive step, i.e., (BN 1 b r), the results are given

as follows.

(ki, knl)s (BN 1D 1)
=k, (qkl,knDb l) b (([kbkn])b T)
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(k) ks 900 91 97 D¢ (bt2plain (BN 1D 1))
= (K1, k7 905 91 97D
(TNN (bt2plain 1) (TLN b) (bt2plain r))
= g (K k7 905 915 97)e (bt2plain 1)) (k;, b)
(k7 kros 9o 91, 90D (bt2plain 1))
With the induction hypothesis

([klvkn])b €T = ([kl/ak;mg;mgllvg;])t (bt?plam :E)
for x =1 and x = r, we have
ky ' br' =g, U (K, b)r'

where I’ and 7’ denote the result values of left and
right subtrees. Note that I’ and r’ may have any
value in the range of the tree homomorphism. The
second condition is that three functions ¢/, g; and
g.. should be tree associative by definition.

Note that these two conditions also form a
sufficient condition for the implementation of the
tree homomorphism by the ternary-tree homomor-
phism. By Lemma 3, computation on any ternary-
tree representation is equivalent to that on the plain
ternary tree representing the same binary-tree if the
functions are tree associative. The induction guar-
antees the correctness of the ternary-tree homomor-
phism on the plain ternary trees.

The following lemma summarizes the discus-

sion.

Lemma 7 The necessary and sufficient condition
for implementing tree homomorphism ([ki, kn))s by
ternary-tree homomorphism (kj, k., gl,, 9, 90)¢ s
that the functions satisfy the following three con-

ditions:
e k] a=k; a holds for any a;

e g 1l (K, b)r=k,lbr holds for any | and r
in the range of the tree homomorphism and for

any b;
e g, g;, and g, are tree associative.

Proof: It follows from the discussion above that
the lemma holds. O

It may be surprising that any given tree homo-
morphism can be written as a ternary-tree homo-

morphism unless we care about the efficiency of the

implementation. The idea is to introduce functions
as the results of local computation. Recall that a
subtree of a ternary tree represents a segment and
a segment with a terminal node has two child seg-
ments. For such a segment with two child segments,
which is labeled as either TLN, TNL, or TNR, we
generate a binary function that takes two values
from the child segments. For readability, we de-
note functions as f, where subscript £ may denote

certain parameter of the function.

Lemma 8 Tree homomorphism (ki,kn])p can be
implemented by a ternary-tree homomorphism
(k. k. 900 9], 92D with the parameter functions
defined as follows.

k a
Kl b =Xry k,zby
Gl for =falr

g fifar=Xey fulfizyr
Gl fn fr=2zy. ful (frzy)

:kla

Proof: We can prove this lemma by checking the
equations in Lemma 7. The first equation holds by
the definition of k;. The second equation holds as

the following calculation shows.

gl (kL b)yr=g l My k,xby)r
=Ny knzby)lr
Y
=k, lbr

Finally, tree associativity on functions g;,, g;, and
g.. can be proved by simple calculations. For exam-

ple, the following calculations show that equation

9y (9n, a foc) fae=gy, a(g] fo fa ) cholds.

LHS =g, (frac) fae
=fa(foac)e

RHS=g;, a A\ry. fa (foxzy)e)c
=Mxy. fa(frxy e ac
=fa(foac)e

We can prove the other equation
gn a fo (g c fae) =g, c (g a fo fa) e

easily in the same manner, where both sides are
reduced into (fp a (fq ce)). a
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In general new functions generated by g; and
g.. expand in terms of their size and computational
cost. For efficient implementation, we attach some
requirements on the size of generated functions, and
a sufficient but a bit strict requirement is to limit
the size of functions to a certain constant. We can
find another relaxed requirement named as uniform
closure property in the discussion by Miller and
Teng [16].

In the following, we demonstrate how to find
a set of suitable functions of the ternary-tree ho-
momorphism. A systematic way to derive the set
of functions is the generalization-and-test approach,
which has been studied for the derivation of parallel
programs for lists [4,8]. In this approach, we start
at a functional form given by templatization of the
function for internal nodes. We then test whether
it is closed under generating functions or generalize
the functional form until the form is closed.

We now show the derivation of an efficient
ternary-tree homomorphism using the tree ho-
momorphism height in Section 2.2 as an exam-
ple. The function height is a tree homomorphism
(height,, height,,]), where the function height,, is de-

fined as follows.
height, lbr=14+(117)

For the first step, we abstract the constant value

in the function height,, to obtain the following form

fa=Azy. a+(@1y)

where a denotes a value introduced by the templa-
tization of the function height,,. Then, we simulate
the generation of functions by g; and g,. using in-
stances of the form. By substituting instances for
the arguments of g;, we obtain a new function as

follows.

g; fifar
=Xy A\ y. 1+ (' 1y))

(A" g n+ (2" Ty") zy)r
=Ary. A"y I+ @ 1y) (2 Ty)r
=y L+ ((zTy) Tr)
=My (I+r) T+ (zTy)

Unfortunately, the above function is not in the

original form. Therefore, we again abstract the

function and obtain the following form of functions.
Note that the new form is a generalized one of the

original form.

fapy =z y.al b+ (xTy)

We can prove that the new form is closed under
generating functions by g; and g, as the following

calculations show.

gl/ f(al,bl) f(an,bn) r
=z y. f(an,bn) (f(a,,bl) Ty
=\t y. a, | (bn+al) T (bn+r)
T (bn+bi+(z1y))

= Az y. f(anT(bn+al)T(bn+r),bn+bl) xzy

97 U flan o) Flarby)
= Y. flanbn) ! (fa, ) TY)
=Xxy.a, T (bp+1)7T (by+a)
T (bn +b-+(zTy))
= AZ Y- flant(bntl)T(bntar)bntby) T Y
Based on these calculations, we can use the
functions g; and g,. for implementing a ternary-tree
homomorphism. Noting that the functional form is
preserved through the computation of the ternary-
tree homomorphism, we can simplify the definition
a bit. By substituting pair (a,b) for function f(4 ),
and with Lemma 8, we have the following ternary-
tree homomorphism (ki, &y, gn, 91, g-)¢ for the tree
homomorphism height, where the five functions are

defined as follows.

kla=1
kl b= (—o0, 1)
gn L (an,bn) 7 =an T (by + (LT 7))
gy (ar, by) (an,bn) T
=(an 1 (bp+a;) T (bn+71), by +b)
9p L (an, bn) (ar,by)
=(an 1 (bn+1) 7T (bn+a), b +b)

5.2 Implementation of Tree Accumulations

As seen in Section 3, the parallel implementation of
scan consists of the bottom-up and the top-down
sweeps on the binary-tree representation of lists. In
this section, we develop implementations of the two
tree accumulations in a similar way on the ternary-

tree representation of binary trees.
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Tkl/ a

N (g1 ¢)

:H

(g, a lv c,,rv‘—v—)

Fig. 9: Illustration of the top-down sweep for the upwards accumulation.

5.2.1 Upwards Accumulation

The upwards accumulation takes two parameter
functions k; and k,, as in Definition 2, which are
used in computing tree homomorphism for each
subtree. We assume the same condition for the
functions, and we define functions k;, k], g;,, g, and
g, in the same way as in Lemma 7.

The computation of the upwards accumulation
can be implemented on the ternary-tree represen-
tation with a bottom-up sweep (Fig. 8) followed by
a top-down sweep (Fig. 9). The bottom-up sweep
compute tree homomorphisms along the structure
of ternary-tree representation, and at the same time
it puts two values from left and right subtrees on
each internal node. The top-down sweep computes

the values of upwards accumulation by passing a

pair of values from the root. The passed values are
_’s at the beginning. Two values put on each in-
ternal node are used in updating the values to the
center subtree whose corresponding segment locates
above in the original binary tree.

In the bottom-up and top-down sweeps, the
computations on the three subtrees are independent
and thus we can implement the upwards accumula-
tion in parallel in a divide-and-conquer manner on

the ternary-tree representation.

5.2.2 Downwards Accumulation

The downwards accumulation takes two parameter
functions g; and g, as in Definition 3. For the imple-
mentation of the downwards accumulation on the

ternary-tree representation, we require some condi-
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Fig. 11: Hlustration of the top-down sweep for the downwards accumulation.

tion on the two parameter functions. Let us assume
the existence of four auxiliary functions ¢}, ¢.., ¥,

and ¥4 satisfying the following three equations.

gicn =q ¢ (¢ n)
:"/Jdc<¢rn)

g (a cn) m =g ¢ (Yy n M)

grcn

If we do not care about efficiency of the functions
there always exist such four auxiliary functions,
which are given in a similar way to Lemma 8.

The computation of the downwards accumula-
tion can also be implemented on the ternary-tree
representation with a bottom-up sweep (Fig. 10)
The

bottom-up sweep computes two values using auxil-

followed by a top-down sweep (Fig. 11).

iary functions and stores two values passed from the

center subtree whose corresponding segment locates
above in the original binary tree. The top-down
sweep computes the values of downwards accumula-
tion using the values stored in the bottom-up sweep.
The computations on internal nodes TNN, TNL,
and TNR are the same in this computation.

Here again, the computations on the three sub-
trees are independent and thus we can implement
the downwards accumulation in parallel on the

ternary-tree representation.

Theorem 1 Tree homomorphism and two tree ac-
cumulations can be implemented in parallel on the
ternary-tree representation in O(log N) steps where
N is the number of nodes in the corresponding bi-

nary tree.
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Proof Sketch: Tree homomorphism can be imple-
mented by a bottom-up sweep and both accumu-
lations can be implemented by a bottom-up sweep
followed by a top-down sweep. Every sweep can
be implemented in parallel based on a divide-and-
conquer manner on ternary-tree representations.
Since there exists a balanced ternary-tree represen-
tation of height O(log N) as stated in Lemma 1.
The correctness of the implementation can be
proved by showing the following two facts. First,
the implementation is correct on the plain ternary-
tree representation, which can be shown by induc-
tion. Secondly, the implementation is tree associa-
tive modulo function ¢t2bt by showing two equa-

tions of tree associativity. O

6 Related Work

The basic idea to represent a (binary) tree with a
balanced tree structure has been studied so far. One
of such representations is a balanced decomposition
tree, where a decomposition tree is generated by re-
cursive removal of an edge from a tree. There are
many applications on this decomposition tree, es-
pecially in computational geometry [3]. There are
also studies for deriving such a decomposition tree
in parallel [24,25]. The decomposition tree losses
structural information of the original binary tree,
only a limited class of computations are applicable
to the decomposition tree. The ternary-tree repre-
sentation in this paper keeps structural information
of the original binary tree and thus any computa-
tion can be mapped onto it if we do not matter
efficiency.

The tree contraction algorithms, whose idea
was first introduced by Miller and Reif [15], are
very important parallel algorithms for implement-
ing tree manipulations, and have been studied by
many researches for many parallel computing mod-
els [1,2,7,14,15]. Gibbons et al. [9] and Skil-
licorn [21,22] have discussed the implementation of
tree homomorphisms and tree accumulations based
on the tree contraction algorithms.

We showed conditions for parallel implementa-
tion of tree homomorphisms and tree accumulations

in Section 5. The conditions are equivalent in terms

of their expressiveness to those given by Abraham-
son et al. [1]. The difference is that our conditions
are given as closure properties of functions while
they formalized based on indexed sets of functions.

One sufficient condition proposed in Section 5
was existence of closed functions, and the same idea
was also studied on deriving associative operators
for parallel computation on lists. The idea of closed
functions was formalized for unary functions as the
context preservation theorem [5], and there are sys-
tems [8,23] for automatic parallelization of list pro-

grams based on this idea.

7 Conclusion

In this paper, we have proposed a new concept of
tree associativity and applied it to development of
parallel algorithms on trees. The contributions are
summarized as follows.

First, we have observed flexible division of bi-
nary trees and proposed the ternary-tree representa-
tion for parallel computation on trees. We have fur-
thermore formalized associativity on this ternary-
tree representation. This tree associativity plays
an important role in parallel computation on trees.

Secondly, we have shown the tree homomor-
phisms and the tree accumulations can be computed
in parallel on the ternary-tree representation. We
have given a condition for implementing tree homo-
morphisms by providing a definition of functions,
which is equivalent to that of the tree contraction
algorithms.

The six equations between ternary-tree repre-

sentations shown in Fig. 7 suggest possibility of lo-
cal balancing with low cost. Developing algorithms
for dynamic balancing of ternary-trees after insert-
ing or deleting nodes is another interesting and
important future work that brings the concept of
ternary-tree representation for parallel computing
on trees into practice.
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