Pragramming Teaching Techuiques, WM. Turski fed.).
North-fHollznd Publ Co., 1973,

AN ANALYBIS OF PROGEAM MAKING

EIITI WARA, XATSUHIKO XAKEHI, MASATO TAKZICHI
Faculty of Zngineering, University of Tokyo, Japan

Abstract: A method of programming in a group wzich partly consists of
postgraduste students is analyzed. It is not purely top-down nor purely
boltom-up. Instead, it is somehow top-down and always anticipates <hae
refinement and coding in later stapges.

1. INTHODUCTION AND GENERAL COHSILDZRATI

For several years we h been giving a lecture, the aim of which was to
teac: computer programming and elemenzary numerical analysis for the second-
year students of the Faculty of Engineering. Those students had chances
tc write programs, run them on the computer and solve the simple problems in
numerical analysis. The text of the lecture was edited from the carefully-
prepared and arranged orogram examples, acscording to our mrinciple.

“he analysis of the results of the examinations and of the romputer outputs
indicated that the purpose of the lecture was almest fulfilled, althourh we could
not help feeling that there would be another approach to the teaching of prosram-
ming. Therefore, we read Professor Dijistra's "A short Introduction to tne Art
of Programming’ wit: ruch interest.

a

Triggered by this bock, we becan to thirk about what our programming style
was, and what the Irmportant factors for accomplishing programs were. When
analysis yields any commendable programiing metnods, we should tell +hem to

the students, especizlly to those majoring in information engineering because
they have rore frecuent opperiunities 4o program at =z higrner level than gensaral

students.

Witn this aim in mind, we discussed our programming methods rchers
of other groups or institutes who were invelved with programming, but excluded
professional prograrmers from our discussions in spite of their experience.

Folloving is the list of our principles of programming. This list
approval of those who joined the discussion because it was similer to theirs.

1. When we start a rough sketch of a program, we consider techniques that
would produce a program that reguired a reascnable smount of wark.

One example is the one-pass assembler for the mini-computer. his mini-
computer came to our laboratory with manufacturer-made asserblers. The two-pass
assembler was too tedious to operate, while the one-pass (i.e., assembly and go)
assembler cccupied more than half of LK, 16-bit words merory. So we examined
the possibility of a shorter, one-pass assembler. Tf the macro facilities were
excluded, the only problem with the assembler is handling the undefined symbol
table. GSince we are trying to vrite assemblers in the Li mini-computer, this
uncdefined symbel table should bte kept as short as possible to provide a wider
area for the problem program. As scon as an undefined symbol becomes defined,
all entries referring to this symbel become garbage. At this peoint, the table
should be squashed, of course retaining the logical connections as before.

128 I Wada, K. Kakeli, M. Tekeichi

Portunately this algorithm (program 1) was an established technigque among us
since we had used this algoritihm already in other compilers. Wa concluded that
the shorter one-pass assembler could be made without any difficulty and would

bring forth considerable gain.
2, Wnile designing the program, we frequently encounter the guestion of

whaien functions to inelude and which to exelude. This is again closely

onnected with our knowledge of programming tecnnigues, as well as our
understanding of human nature. In designing the source program context editor
for the mini-computer mentioned above, we abandoned the upward moverent of

the pointer since at that time we did not know the magic list, and we did not
like having two links for a record in the linear list. This evidently decreases
the number of records to be stored in the mermory. A motte in programming for
the mini-computers, we believe, is to make everything in the smallest limit.

5. 'Irying to keep every part of the program or data area as short as
possible is recommended since this makes it easier for us to handle the whole
program. leoreover this tendency has a double effect: it decreases progran
writing time and, later, increases program running speed. To this end, we are
constantly trying to write a pregranm that produces the same effect in fewer stens
and then staharing the results among us. Examples are! (i) to construct a word
in the accumulator from some sections of word A and complementary sections of
word B, assuming that the words C and D contain the masking patterns for the
requested sections of A and B, respectively., and word T serves as a temporary
storage; instead of writing a program like:

A

Losd A
fnd E
Store T
Load B
And b
Xo I g

Load A
for B
fnd G
Yor B 3

and (ii) to test whether a word in the amccumulator contains a code of letters

from A to % in ASCII, granting that the code of A is 4l in hexadecimal or 65 in
decimal anc that of Z is SA or 90, write in the 16-bit accumulator as

Add = (327€5-90)
Ada = 26

Skip if overflow
Jump to NOWLETTER.

L. However, if we have no excellent technique at hand, we put off improving
the offending part until a later stage, and hurry to complete the whole program
whilwe are still interested in it. This is because, on the one hand, to complete
the whole program is very much harder than to make the local improvement and
requires great concentration, and we cannot endure such deep concentration for
long. On the other hand, trial usage of the first version program might reveal
that the basic desipgn of the program is undesirable. This should be corrected
pefore too many users become accustomed to the undesirable interface with the
program. The improvement of the local efficiency is never too late even after
discovering the disagreeable points. According to our experience in the
mini-computer, almost all first version programs were coded In less than a

An analysis of program making 129

week except for the Fortran compiler-interpreter. After every function of the
program is certified {though it is often very difficult to do this perfectly),
we start to work on the extensive improvements. One example of this
improvement is in the length of the orogram as in the case of the orne-pass
assembler, introduced in the preceding section, in which the first wversion
program cccupied 860 wordswnile the shortened one requires only T80 words of
Memnory .

5 n programming, we decide the data structure at the earliest chance,
and spend considerable time in desipning it and the basic routines of data
handling before the detailed planning starts. We admit hato having the tendency
Professor Dijkstra described in hitook, of putting the cart before horse.
However, in the case of the mini-comnuter, memory storage is so precious that
we contrive many possibilities in data structure focusing attention on
compactness of the data area and on speed of data handling. One of the strategies
in table searching is to construct the inner loop to contain only one test of
pattern matching. Table end is tested in a tricky way as a special case of the
match by a slight provision at the veginning of the search.

6. As might be cbserved from the above description, our programming method
is not systematic at all. Ve have based our programming on several intuitive
attitudes, acquired unconsciously. The faect that our method is less systematic
mignt be related to the properties of system programs, which are less systematic
than typical provlem programs. BHecause of this unsystematic apvrcach, we think,
we are often stuck in the mud during the programming. The chlaly escape is
to change our point of view, althoug:h nobody knows explicitly the rost effective
change. Actually we saved many programs this way. Zven if the program is not
apparently in the mud, we strongly recommend throwing out the first version of
& program and writing it again from a new angle. 1In reality, however, this is
not often done.

PROGRAIMING THE TYPZ-OUT ROUTIHE

3%

In this section, we will trace our real experience in designing and coding
the type-out routine, again on the mini-computer. By type-out routine, we mean
one such as the RUNOFF routine in the MAC system of MIT, which, according to the
YAC programmer's guide, types out memorandum files of English text in manuseript
fermat. Many such prograns are known to exist. The function and program of the
routine are now of no interest. The current presentation of it Jjust to serve
for observing, from a higher level, how the programming is actually performed.
The first trigger to this program was pulled when one of iie authors saw a
computer-controlled manuscript many years apgo. The first step to the program-—
ming of this routine began, probably, while we were preparing the first version of
the Algol I report in 13068, and at that time and later on, the possitility of
implementation was discussed oceasionally., The first step in those days wvould
be a discussion something like the following.

tep 1
Q. What sort of functions shouléd Le performed bty the type out routine?

4. Something like the report of the Algol I or Algol 8 should be edited
or typed out.

4- Tec do so, what would be tie most serious problem?

A. Gince these reports contain many type fonts, the iypins element could
be replaced and the manuscript of the multi-“cont should be printed.

130 b Wada, K. Kakehi, M, Tekeichi

2. How would the problem be solved?

L. If tae typing element could be replaced automatically, it i3 solved.
Sut that seems almost impossible, It would also be good if, at every chanze in
tie font. the macaine could stop and request that the operator replace the
typing element, but that would be far from practical. The most applicable
solution would be ms follows. Prevare one page irage in merory: then, let the
operator set a typing element of the font whiga is used in that paze and let the
scen the page imege and print all the charscters of the font, Waen the

computer nas finished this process, let the operator set the second element, put
+he naper in the ini<ial pesition and start the computer. This time, tne
computer would fill in the ©blanks with the characters of the second font. A

¥

by-product of this is the possibili of automatically printing the subscripts
or superscripts if we treat them as different fonts from the main text. The
subseript pesiticns are left blank whiile the wmain text is printed. To print the
subseript,; return the paper, adjusting it sllgatly higher than tefore, and start
tne computer with the same tyj elemens. This seems very useful fo

ical manuscripts.

g, - How is the irbut tepe prepared?

Lave @ very convenient source program editor, so editing and
correcsion would be very easy.

about the output?
4. The on-line connected type-element typewriter would be indispensable.

o5 It practiceil

A. If casette tape memory is supplied, it surely is. 3But even without
it, the system would prove useful.

Q. What other functions are expecied?

4., & footnote editor and conversion of the symbolic reference from one
pars of the text into page-number reference, Just like the elimination of
the symbolic address reference by the asserbler. This would be a burden for
the mini-computer, however, and if we would like to realize the system as
quickly as possible, these functions should be excluded. The materiasl mentioned
above is provably still an ides for development at some cther +ime. Because
of these ideas for other possibilities, once the project starts, we are at once
ready to undertake it.

leanwhaile the typewriter was connected to the mini-computer, esnd we started
the implementation. The following was the second step in plannins.

Our usual practice soon after the installment of a new input or output
Jevice is to treat the related commands on it. But as the typewriter commands
were very simple we omitted this practice.

First, we designed the input rules. The input device is the ordinary
teletype with G4 graphic characters including the space. As the general
principle or the fundamental reguirement, there should be plain correspondence
between the letters and digits of input and output. On the standard typing
element, the character set is very similar to that of teletype. DBut there
are such typing elements, for instance, "symbol”, with characters on them
which are guite different from the teletype character set. This produces
difficulty in deciding the correspondence between the special characters and the

An analyvsis of program making 131

teletype codes. Accordingly, the input rules for the characters of the non-
standard typine elements were not settled. Instead, correspondence tables were
designed between the set of the standard element characters and that of non-
standard elements. For exsmple, since symbol " " corresponds to the capital F
according to this table, input T with specification of "symbol" font will appear
as cn the output.

Even within the iimits of the standard element, there are still some charac-
ters winich exist either on the teletype or on the typewriter but not on both.
After various considerations, the correspondence hetween the sets was decided
upcn as follows:

teletype Lypewriter
¢

o

Two angle brackets and of teletyre would be used, first, as case-
shift codes from lower to upper and upper to lower, respectively, and, second, as
control delimiters in the input record. These decisions were really very
exciting., ©Since this decision fixes the guality of thne routine, it should be
made carefully yet nromptly. It is wvery irmportant to prepare an excellent systerm
program with good interface in the early stage of the computer's life, If the
first programs installed are not good ones, they inspire installation of similar
programs and thus cause confusion. Ian excellent program is supplied at a later
time, trhe users are unfortunately accustomed to the former, clumsy interface, and
nobody wants to use the new one, thus making thoroug: debugging of the new system
impossivle.

If the design is analyzed at this level, there might be another xind of
interest. One criterion among us in this tyne of decision is easc of remermbrance.
i N
5

remind one of the crescendo from small to large and ' ", of decrescendo?

Lext, types of control were selected. Contrary to the input character set,
tae control set is open ended, allowing new controls to be added later somewhat
freely. 5o, as the initial set, we selected from those of the R ndent",
"undent', "begin page', "adjust', "mojust', "f£i1l", "nofill" and ", and to
this set we added "end" and "back space’. As a first experiment, we thought,
this control set would be sufficient. The same abbreviations of contrcl as the
RUNNOFF were adopted.

"End" is the indication of the end of file and the effect of 'back space' is
unéerstood literally. 3Since the teletype keyboard has no back-svpace key, we had
to include "back space" control to type symbols like # or real.

tep 3

e

The next consideration i1s the setting up of the page image in memory.
First, we estimated whether the 4K memory was cnough for holding one nage.
Suppese cne page consists of G0 lines and cne line, of G0 characters. Then. one
word-per-character configuration occupies 3.6% wards, which compels extremely
pact programming and almost prohibits the enlargement of the page size.
the imase buffer handling beccmes rather complicated, the zslf word or &
bits-per-caaracter configuration zad to be used.

dext step is the design of the &-bit patterns as the elements of the page
image. Because the input to the routine is placed into the image, character-by-
charscter, without changing the order, nc special vrovision woculd seem necessary
except that for the treatment of spaces. To Justify the right side., space

132 k. Wada, K. Kakehi, M. Tekeichi

in the line should be extended according to an algorithm. If this treatment
causes the movement of the already packed patterns in the image, though

it would not be impossible, it would take longer than, say, by adding a counter
to the space pattern and increasing the counter which corresponds to widening

the space. The slowness in input would be less favorable since input tape is

fed from the photo-electric tape reader. As for the two shift controls, font
shift and case shift, usually one of the two is used, ons to store the shift code
separately from the character code, thus indicating the shift as an internal
state, and the other, combining shift information with the ccde, thus expanding
tue total lensth of code. In the limit of 8 bits, our solution was like this.
Font-shift was to be stored separately and case shift combined with code. We
cannot recall why we reached this soluticn. Provably, past experience and some
unconscious anticipation of the later coding stage made us decide so. If
aindsight is permitted, the reascns for cur decision would have been: (i) corbined
font shift lengthens code length, for example, by 4 bits if ten sets of font are
used, while combined case shift lengthens only 1 bit for 26 characters, (ii) in the
output stege, & change in font has an important meaning, while a character, alcng
with code shift, is mapped into the output code by the code conversion table.
Whether it was the best solution or not is still unknown. It would be very
interesting to observe how the novice programmer in this sort of »nrograrming
reacnies a solution when he encounters the present oroblem for the first time.

The solved B-bit patterns are summarized below.

lxxxxxxx space, last 7 bits are space count
011lxxxx font shift, last & bits are font number
end of page

new line

01103200 back space, without space counter
00000000 characters, (=mod(ASCIIcode,Clk)+

iwperense then 6L else 0)

1010

0101

Cne of the planned local improvements is the medification of the back space
pattern. As will be descrived later, the main scheme of the output subroutine
caanced during the course of prosramming. At the beginning we considered
eting and testing the program with a single typing element. In that version
ol' tane program, at each occurrence of the back space pattern, the computer would
send the tack space control cut te the typewriter, However, in the multi-font
output subroutine, the virtual positiecn of the typing element is only accumulated
in the counter until the actual printing becomes necessary. For this modified
version, the back space with counter would be suitable. The end-page pattern
was employzd to detect that the page had ended with the same mechanism as for the
pattern distribution, i.e., by way of the multi-jumping table. The algorithm

ttached to the character patterns was adopted as the simplest to prepare the
short domain of argurment for the code conversion table.

Then we stepped into the coding of the input analyzer. The analyzer works
like the lexical analyzer or basic symbol reader or, according to our terminology,
the sylleble reader, generally used in compiler construction. Consequently, the
fundamental techniques are very familiar and as scon as the folleowing decisions
are made, this could be ccded on the spet. Into what groups is the input
analyzed? Tor each group, where is the additioral information stored? Since,
in esserbly language, the multi-exit method is usually employed to return from
the subreoutine, the order of the exits must be chosen. The current version
classifies input into, (i) word, (ii) space, (iii) carriage return and
(iv) controls. The line feed and cther non-graphic code are neglected in the
input anelyzer. On designing the first version, no attention was paid to
detecting the ayphen. But some trial use made us feel that the synthesized
words should be separated at the hyphenated position, when they bridged the lines,

An analysis of program making 133

provement is not sco ursgent because it is irrelevant to the user-

hough this i

maciaine interface.,

The pame image construction was not difficult. This is the main routine of

the type out program. The design of this part started from tae main loop,
rostponing the adjustment of the boundary conditions or the detailed vpreparation
of information for the subroutines.

Call the input analyzer. TIf the unit is a word, and if the remaininec space
in the line is enough to hold it, then place the word. If the word is too long
to place, call the right-adjust subrcutine and nrepare the next line and place
the word in the new line. But if it is impossiuvle to prepare the next line
because of the page limit, then call the output subroutine. Then try to prepare
the next line. If the next unit is a space, and if it is possible %o place it
in the current line, place it there. If placing is impossible. prepare the next
line and discard the space. If a carriage return is acquired, and it is the
nenfill mode, prepare the next line, but otherwise. treat it like a space. The
font shift is analyzed by the input analyzer, and it is attached to the word
theough it is not Included in the word Zength. Other controls are treated

independently. "Fill", "nonfill", "adjust" and "nojust' set or reset the related
flip-flops. "Indent" and "undent' set the related counters. “Pack space”

pleces the [requency of the back space pattern varameter. 'Begin page' vlaces

an end of-page pattern and cells the output subroutine, then prepares the new
pzme. "Bresk! places a new line pattern and prepares the next . "Znd" alse
ruts the end of page pattern and calls the output subroutinebut

s time it
exits from the main control loop and completes the program. The vprecision

of the initial coding was something lixe this, thousz inconsistencies were
noticed here and there; for example, the avove description refers to a nlacing

a new line pattern waen a "uvreak' control appesred wiile it neglected a new

line after calling the adjust subroutine or after the cverflowed space.

Of course, they are taken intec asccount on the seccnd version of the control loop.

& possible starting point of the whole control loop would be the new nage
initialization after the output calling of "begin page” control. wever, the
final form consisted of another page initislization and main control loop with
an input analyzer call at the entrance, in that order. This confimuration seems
more natural than initiating the program from a special point in the loon.
The final confipuration would not lengthen the entire nrograrl very much. A
this, detailed planning for the various parts of the lesp were made. Count
up the number of spaces for the right-adjust subroutine was one of the exam
There was a place to be programmed carefully. When the next line was prepare
anew, & space pattern with space count zero was inserted even though there was
no indentation at all. This is simply for the adjusting routine's sake, tecsuse
in adjusting the right end, the leftmost space should not be adjusted if it is an
indentation. It is desirable to treat various conditions as uniformly as possible.
So even with zero indentation, an extra space was inserted. However, care must
be taken in setting the first space counter. We could not set this when the new
line was prepared, since immedistely after this and before the next word was
rlaced, ancther "indentation” control might come. This sort of need for care
might be easily forgotten. We ocurselves were also on the verge of neglecting
tle condition because all the programming was adveancing at full speed,

v

fter
ing
vles.
d

leaching this point, we began coding the main control loop in the assembler
language and attached the input analyzer to it. Without output and adjusting
routines, the first test was initiated. Of course, the main progrem calls
adjusting and output subroutines. The adjusting routine is a dummy. It return
control immediately without any processing. The output routine iz a hexadecimal
dump of the page image. Time between the coding initiaticn and running the test
was two or three hours; the output made us feel that we were at the height of

134 L. Wada, K. Kakchi, M. Tekeichi

prograrming or even tiet we had already crossed over the saddle point.

Then the adjusting subroutine and single-fort output subroutine were coced.
These routines made it possible for us to write letters in these early days.
The whole process from the beginning of the second step of the completion of the
single-font system was o matter of two or three days.

Tiere was & comparatively quiet pericd when trial use of the program was made.
Tzose wic cxamined the output sucs ed their own favorite adjusting algorithms;
for exsmple, the wider spaces should be distributed from sie neighbournood of tze
lonzest word in the line, ete.

Joon we resumed programming. Tais time, the multi-font cutput routine
was planned.

The first design was something like this.

There were two contrel loops, each of which was essentially the main cenirol
loeop of the single-font output routine. In the sinpgle-font contral loop, the
font shift pattern took no action. Dut now they play the role of switching
between loops. One of the loops controls the "eurrent” font and the other loop
undertakes the 'other” font. The 'other" font loop treats a character as &
space, while the 'current' font loop prints a character on its position. But it
is undesiratle to move the typing element in vain in the "other" locp by a snace
or a space ecuivelent character. Therefore, in the "other” font locp. the spacing
was only counted in the computer, ané on transferring to the "eurrent' loop, the
counted spaces should be sent out. The new line of the "other" font sends out a
return control toc the typevriter and resets the space count. On transferring from
~he "eurrent! font to the "other' cne, a proper space count should be cazleulated.
Zcmewhere in the planning, it looked more complicated than necessary. The whole
planning was reconstructed from the foundation. The new plan emnloyed the concept
of four counters, namely, the actual vertical {horizontal) counter which reflects
the versicnl (horizontal) position of the typing element and the virtual vertical
(norizontnl) counter which reflects the scanned vertical {norizontal) position in
the page irage. On the initiation of the page image scan, the four counters are
reset to zero. Durine the scan, the virtual counters go up and down following
vne scanning position. If a character comes znd the character is of the other
font, the virtual horizontal counter increases by one. If & character of the
curre font comes, then a subroutine is called to locate the typing element to
tne page image position, assigning the actual counters to the values of the
corresponding virtuazl ones. The attached progrem 2 shows this algorithm, though
the declarations of some predicates or procedures are omitted wherever their
meaning is obvious. The tabulations are set at every 8 positions because the
mini-computer hes no division instruction, and the calculation of guotient and
remainder, when the division is 0, is exceptionally simple on such a machine.

ent. We wish to express cur most sincere thanks to Professor
5 ringuti for his constant guidance and to the colleapues of our laboratory
for their help. Our gratitude is also expressed to Professor T. Iwamura
and the members of tre Algel d group, as well as to those who happened to
partieinate iz this work for their enthusiastic and valuaole discussions.

A analysis of prograne making

procedure garba.g:;e:oller:tion(ig;e;er‘ 10, integer 30);

begin integer 1i,j;

end;

i:=i0;
vhile i]
Bepin If 1ink

garbage(i) do 1:=i+1;
rarbage(j-1) do ,i:

joand link[i] JC do

link[i]:=link[1inx(i]],

=i+l

end

progran 2

procedure multifontoutput();
tegin inteper av,vv,ah,vh,i,code;
boclean fontflag,loopcontrol,lowercase;
procedure locate();
tegin if vv av and vh ah do
begin writereturn();
an:=0; av:=av+l;

end;
while av

vv do begin writevfeed():; av:=av+l end;

while ah div 8§ vh div 8 do
begin writetab();
ah:=(ah div8 + 1)x8

end;

while ah

while ah
end

vh do begin writespace(); an:=ah+l end;

vh do begin writebackspace(); sh:=ah-1 end

=t

print("load new paper"); wait();

1:=0;
while 1 10 do

begin if fonttable[l] 0 do
begin print("set type element", i); wait();
avi=vy:i=ah:;=vh:=0;
initializeimagepointer();
loopeontrol :=true;
while loopcontrol do
begin getpattern();

if space() do vh:=vh+spacecount;

if font{) do fontflag:=fontnumber=i;
if backspace() do vh: 1
if return() do begin wvizvv+l;

if endpage() do loopecontrol:=false;
if letter() do

vh:i=C end;

whn

136 E. Wada, K. Kakefi, M. Tekeichi

Legin if fontflag do
begin locate(); i}
codei=codetable[letternumber];
if code _ G4 and lowercase da
begin writeup
lowercase:

lse
ends
if ecode G4 and lowercase do

begin writelowercase();
lowercase:=true
end;
writeletter(code);
ah:=ah+l
end
i i=vh+l

-1

An analvsis of program making 13

=rshov:

ou stated that your method is not so systematic as it could be; nevertheless
it is highly systematic, and it seriously induces some discipline in developing a
program from the analysis of specification up to final debugeing and delivery. 1
would like to know now you administer the programmers tc act in this way.

Wada:

I think our method is not s0 systematic as lectures given in the classroom,
bt think prograrming can be taught in the so-called trade guild system:

one master and many pupils. From the beg E

nning of my programming life I have

veen using that system; and I think 1t is the best system for students, especially
for postgraduste students with a lot of ability. We Jjust live wit the posteraduate
students in our group everydasy and provide a lot of camputing facilities for them:
and we talk about the comiler that should be coded, the language that must be
implemented, or what sort of utility programs mig speed up the debupging and

so on. In these discussions many graduate students grasp the atmosphere of our
programming. Of course, for undergraduate students we have to use quite a
different system, but for postgraduate students I think this is thbes wt way.

Woodger:

You mentioned tzat you had used some programuing technigues because the core
store in your mini-computer was sc precious. Do you think that in consequence of
those methods you suffer afterwards the cost of programming time or of re-program-
ming, which if you put it in terms of money, would equal the cost of more core
storage?

dada:

I think if you are writing system programs, for instance an assembler, the
programming cost of making the whole program as short as possible is less
expensive in comperison with the core storage left for the users. Tor instance,
Suppose we left an amount a of core storage for users. We can also leave them
an amount b (p_ 2] of core by improving our assemtler, The users receiving
amount a2 of core merory. might try to write, using the assembler, a program of
length ¢, If 2 e¢ b this task is quite impossible for them. 3Bu: if wve give

them the shorter version of the assembler, the cne leaving amount b of core,

we can makxe this task possible, There is of course, some physical limit, but
we should try to provide users witz as much core memory as possitle.

