BEV I M) 7THESE 2BARKESHR/IE

6B-2

Inserting Injection Operations to Denotational Specifications

Masato Takeichi

Department of Computer Science
The University of Electro-Communications
1-5-1 Chofugaoka, Chofu-shi, Tokyo 182, Japan

Abstract

In describing denotational semantics of
programming languages, insertion of injections
into sum domains 1is commonly assumed as a
convention and is omitted for the sake of
brevity. This in turn leads to difficulties for
semantic processing systems which accept
denotational specifications as input and
mechanically calculate them for debugging the
semantics.

In this paper we describe an algorithm for
inserting injection operations to denotational
specifications as part of typechecking process.

1. Introduction

The Semantics Implementation System (SIS)
of Peter Mosses [8] can be considered as the
first system which generates a compiler or an
interpreter from syntactic and semantic
specifications written in the style of
denotational semantics. Experience with SIS led
us to designing an experimental system [9] which
includes a typechecker for which SIS lacks, and
a translator to convert denotational description

into funcrional programs. Since it has no
interface to the parser, only a few example
specifications have been processed. More

recently, a Semantic Prototyping System (SPS) of
Mitchell Wand has been built [13]. Most of the
inefficiencies of SIS pointed out in [1] have

been improved in SPS using the tools available
in Unix such as Yacc, Franz Lisp, and Scheme 84,
Wand has also implemented a typechecker and

insists on its importance
with sizable examples.

from his experience
He makes an interesting
remark that the most common error detected by
the typechecker was failure to inject operands
into corresponding sum domains. The principal
cause underlying such failure is to be sought in
the fact thar we usually take a value both as an
element of a sum domain and as an element of its
summand domain when we write down denotational
specifications. This kind of convention is
widely adopted 1in textbooks on denotational
semantics [4,12] for avoiding a tedious task of
balancing types of operands, and making the
specifications more readable. As mentioned in
[4], such convention might be taken as a
conversion analogous to the coercion operation
of programming languages. The necessary
operations for retaining consistent types could
be inserted in such a way rthat conversion
operations between integers and reals are
generated by compilers. This would serve for a
concise notation to be accepted by the semantic
processing system.

In this paper we deal with an algorithm to
insert denotational

injection «operations to

==l

specifications wricten in a semantics

description language, which we define in the
next section before going into the main
discussion on the algorithm.
2. A Semantics Description Language

Major components of SIS are a parser—
generater and an evaluator. The parser-
generator accepts concrete syntax of cthe

language and generates a parser to analyze
programs written in that language into some form

of the abstract syntax tree. The abstract
syntax tree corresponds to an element of the
syntactic domain which is represented by
concrete data structures manipulated by the

evaluator. Semantics of the language is written
using Denotational Semantics Language (DSL),
which is an extension of lambda neotation. DSL
description is converted into a simpler form to
be evaluated when the parse tree is given.

The SPS of Wand <consists of similar

components. In addition, included is a type-—
checker for guaranteeing type consistency. Yacc
and Scheme 84 take the part of the parser-
generator and the evaluator, respectively.
Semancics is described using Scheme 84
functions. As mentioned in the last section,
programs compiled by SPS5 run much faster than

those by SIS. This proves that the efficient
interpreter provided by Scheme 8% means a great
deal. And the Yacc parser-generator adopted by
5PS seems to do much to increase the efficiency
of syntactic processing.

Cur Semantics Description Language (SDL) is
independent of the parser-generator, while the
interface to it should be assumed. We expect to
use popular software tools such as Yacc. We
also assume that SDL description can be directly
evaluated, or translated into certain functional
language for execution. In our previous work
[9], we chose ML [3,5] as an implementation
language of the evaluator. SDL consists of the
facilities to define domains and functions; no
syntactic definitions are written in SDL. We
refrain from giving a complete definition of SDL
in this paper as space is limited.
will informally define a small set of
primitives. And expected facilities to be
implemented by the evaluator will be mentioned
where appropriate.

Instead, we

2.1 Domains

In the semantics processing system, every
domain has to be implemented in some way; that
is, every element of defined domains should he
represented as a value to be calculated by the
evaluator.

The ways of defining domains in SDL follow

the standard textbook. We
Section 3.3 of [4].

Let Oy Dy DB, stand for arbitrary
domains, and Ini, Bool, 7 for primitive domains.
(D1) Primitive Domains

(D1.1) Standard domains:
Int of integer values, and
Bool of boolean values,
(D1.2) Singleton domains:

leave the derails to

? of a distinguished element ?, and
arbitrary values represented by
symbols.

(D1.3) abstract domains:
Domains of which structures or wvalues
are not specified in DSL but are to be
provided by the evaluator.

(D2) Function Domains
D = D, of functions with the source D
and the target D,.

{D3) Producr Domains
D, ®» D, % ,..x D of n-tuples of
eiements from D, , Dz,n. I o

(D4) Sequence Domains =
D* of finite
D.

(D5) Sum Domains
EIED]] ¥ tztDz] +

1

sequences of elements from

se + b [Dn] of Dl’ Dz,

W g Dn with tags rl, t2, YT tn.
Domain equations are used to define recursive
domains:
D, =6, [p,, Dm]
=G By «omg B]

where each B is a domaln expression constructed
from D_, ..r + D and primitive domains using
the domain constrd%tors =, %, ¥, and + described
above.

Although it would be unnecessary to explain
each of these in detail, several points should
be noted.

The domain '?' of (D1.2) is intended to be
one consisting of a single element '7!
representing the ‘'semantically nonsensical"
value as in SIS.

Implementation of abstract domains of
(D1.3) remains open in the sense of the abstract
type in programming languages. This is similar
to "holes" of the type system of SPS. We
require for these domains only that all the
necessary functions and their types are to be
given in the part of expression definitions.

The construction rule (D5) of the sum
domain differs slightly from that of [4]. Every
summand of a sum domain must have a unique tag
which is used to discriminate among summands and
to inject the summand into the sum demain.

2.2 Expressions

Expressions wused in defining semantic
functions are usuvally written in a particular
version of lambda notation. We assume 1in SDL

that an expression is either
(El) a constant of type integer or boolean,
(E2) a variable,
(E3) a combination, Ty an
expression of the form
fe ... e
where f is a viriable and e
expressions,
(E4) a lambda expression of the form
Av.e,

applicative

e e are
1 Y T

or
(ES5) a case expression of the form
case e {c. [v.]. e | ... | t [v J.e }
0" 11 1 n_ .n n
where €4 €y, --- , €_are expressions, L,
g n :
, t are taps of a sum demain and Vl'
n s
» v are bindings.

The binding in (E4) and (E3) is an extension to
lambda notation. It is either
(Bl) a variable x,
or
(B2) a structured binding of the form
E 8 ssa ¥
where & is a cgnstructor, v
bindings.

e n W HTS
1" ' n

The constructor in bindings may be any curried

function which makes a structured data of a
particular type from its components. Examples
are

prefix T - a¥ > a¥

palr a—=> 8 »a x §

Constructors 'prefix' and 'pair' are polymorphic
P P poly p

(See Section 3.1) in the sense cthat they are
applicable to any types ¢ and 8 [6]. We will
shortly discuss about polymorphism 1in our

typechecking algorithm.
The case expression

extention to conventional

tests values of a

(E3) 1is a further
lambda notation. It
sum domain and binds their
components to variables of its corresponding
summands. To gain a better understanding of the
usage of the case notaion,
primitive operations

(a1,

consider the
over sum demains used in
For a sum domain
D =¢t,[D]+

there are primitive functions
(Test) isD, D - Bool
true 1f d comes from summand D.L

+ ¢t [D 1,
o

ish, d =
i ;
false otherwise

outD D->D,

d. in'D, if (i&D, d) holds
1 1 1

(Projection)

outD. d =
i :

s otherwise
and
{Injection)

inDi d =d in

inD, : Di_.’D

As mentioned in the previous section, we use tag
t. to inject values of D into D; that is, (inD,
d} is written as (t, d} im SDL. The test isD’
and the projection outDi can be written usiné
the case notation:

case d {tlfvl].false I...\ci[v,].true | o cnik
and *

case d {tltvl]' ¢ A IR
respectively.

As far as typechecking 1is concerned,
special forms like infix notation for addition
are not relevant and are excluded from SDL. The
conditional expression '"if e then e, else ez”
could be defined by a function

if : Bool = a2 » a » «

| Bl lew. [ae s
1 1 1

or
if : (¢ x a) + Bool - a
as appropriate. Polymorphic function appears
here again. i
Polymorphism eliminates the need to
consider special functions one by one, and thus

makes our versalile and

language of

typechecking
independent of the
the evaluaror.

algorithm
implementation
We now extend the domain
adding

(DO) type variables a, 8, ...
for specifying polymorphic functions.

expression by

The expression definition is a system of
recursive equations

By # Ty = FylBys vve 3 E]

E :T =FI[E s E 1,
where TEaCF\nE: s a variable, T. 1is a
expression constructed by (DO)-(D&Y, and
is an expression built by (E1)-(E5).
the domain construction rule (D5)
here.

Expression F . [E, ,...,E] may be omitted; in
this case E_:T. 51mp{y states that E. is of type
'l'_l which may be polymorphic, i.e. ,]may contain
type variables. Otherwise, E, is defined by F,

E] of type T, which must not bé
poiymorphlc t

domain
each F,
Note that
is not allowed

3. Types and Typechecking

In order to ensure consistent treatment of
the type, we follow a clear exposition of
polymorphic typechecking by [2]. We start with

discussion of types with relation to domains
described in the previous section.
3.1 Types

Correspondence between domains and types is
straightforward. In short, Lypes are

"structures'" given by domain definitions. Given
a domain equation
D. = G_[D , D 1]
the type speclfled]by D is Bne by G.[D, ,...,D
i . i1 m
]. That is, we are concerned with the structure
of the domain.
A type can be either a type variable a, 8,
., Or a type operator. Type variable stand
for arbitrary types. The type operator
corresponds to one of the primitive domains or
the domain constructors. Operators standing for
the primitive domains like 'Int', 'Bool', '7!'
and the abstract ones are nullary. Parametric
operators like -, %, *, and + takes one or more
types as arguments. Types containing type
variables are called polymorphic. Other types
are monomorphic. It should be noted that types
corresponding to domain expressions in domain
definitions are monomorphic. In SDL, an

expression, particularly a function, can be

polymerphic. Thus, a type is either
(T1)
(T1.1) a type variable,
(T1.2) a primitive type operator int, bool,
., corresponding to a primitive
domain,
(T2) whc'e T, and T, are types,
1
(T3) % F GE T , where T,, T., .+., T
n 1 2 n
are types,
(T¢) T*, where T is a type,
or
T
(T3) tlle} + t%[TZJ B s B B [Tn], where T1
YVou sev 9 n are types, an tl’ tg’ LEE 5

t. B ags.
. re tags

3.2 Typechecking and Injection Operations
Typechecking is a process of checking

rerm, or subexpression of an
expression has a type consistent with ones of
other terms. In particular, we are concerned
with the consistency of types of combinations.
Let e and e. be of type u, = n and U
respectively. Then in what condition is the
term {e. e,) meaningful? A sufficient answer to
this question would be u, = u, and the type of
(e. e) is n. Ln another case where p_ is a sum
type and p, is its summand with tag t , we could
transform the term inte acceptable one (e (¢t

)) using injection operator My = We
WLil make a generalization of t%lﬁ idea in our
typechecking algorithm.

whether every

In SDL, and in many texthooks, the type of
the expression is given in its definition as
described in the last section. Although naming

L] 1

convention such as 'e' for a variable of ctype
"Exp' might be applied, there is no declaration
of types for locally used variables. This is
contrast Lo conventional typed languages Llike
Pascal. Typechecking in SDL is, therefore, the
process of checking whether every Fi[El""’E]
does or does not have a type consistent with

in some way under the condition that each E_ has
type T, FEor j=1,2,.:.;n. No types for {1ocal
varlabkLs are specified in SDL.

In addition, our typechecker does not only
check the consistency of types but also insert
necessary injection operations to SDL
specifications.

3.3 Typechecking Algorithm
Our typechecking algorithm partly relies on

one for polymorphic type systems in ML [2,6]. It

is different, however, in that our algorithm
determines types of constituents of an
expression from the type of that expression.

That is, types are propagated downwards from an

expression to its constituent subexpressions.

This enables us to insert injection operations

into subexpressions properly to keep the type of

the larger expression unaffected.
The basic algorithm can be
follows.

(A1) If a constant c¢ of type int appears in the
context of required type =, iInjection
function 4: int » n, if any, is inserted to
have (& ¢) of type n.

Similarly for a constant of type bool.

described as

(A2) If a variable x of type u appears in the
context of required ¢type =n, injection
function &: w— n, if any, is inserted to

have (& x) of type n. Types of variables
are assigned by expression definitions or
bindings in expressions of the forms (E&4)
or (E5) and given as an environment.

(A3) For a combination (f e, ... e) in the
context of required type =x, assume that
variable f is assigned the type U . -» ... =

B> U, which can be polymorphic with type
variables «a,, e P = Find cype
environment ~of type variables a. by
unifying p with = or its summands. J Then
replace type variables @yy wwsy Eo in u,—»

- U —u by monotypes using the type

env1ronment just found to obtain a monotype
u 3> .. > T TR

Make a new combination &(f e! e') where
A is the injection function of typg u's n,
and each e! is a transformed version of e,
in the context of type u£ with the

—19h=

environment of variables remains unchanged.
{A4) For a lamhda expression Av.e in the context
of type n, find a funcrional type my>
from = itself or its summand with injection

function 4: (a —=n_)on=. Update the
environment of variables to reflect the
lambda variables in binding v of type =

(See below). Then check and transform

expression e in the context of type =, with
the new environment to obtain e'. ﬁake a
combination &(iv.e') of & and a new lambda
expression (Av.e') of type n.
(A5) For a case expression
case e_ it [ul].e1|...th[Un].e }

in the conrext requiring type x, find a
functional type n . ==, from n itself or its
summands with injecrion a&: (= —+n2)—’n.
Assume that n, is a sum type

iy & bafp] o+ +c [u J.

1 Tk ; non
Transform e into e! of type y
For each e, find the new environment for

variables which reflects binding v., and
transform e, with respect to type U, to
obtain e! wunder that environment. hen

I =
make a new expression
al(case e' {t [v].e
E s LR

-...\tﬂ[vn].e'}).
of type =n. H

]
1 I

In (A4) and (AS5), the environment of variables
needs to be updated. Bindings are either a
simple variable or a composite variable

structure.

(AB1) 1f the binding is a simple variable x and
the type given is n, then new environment
is one updated as x has type =.

(AB2) If the binding is of the form § v, ... %
and the type given is n, assume that & has
type Y, ... = U —- U, which can be
polymorphic with tyﬁé variables a,, ... ,

@ . Note that n should be monomorphic.
Then, find type environment of type
variables a, by unifying y with n. Then

replace theJtype variables in g, - ... >
L = U to obtain u'l-)- i oa e u]' (u'=a).
The new enviromment is obtained by
applying this algorithm recursively.

It should be noted that the wunification
algorithm [11] is used in stages (A3) and (AB2)
in a similar way to find particular instances of
polymorphic types.

A small example of rtypechecking and
transforming SDL opecificatien is shown in the
Appendix. In this example SDL description is
written in the form of S-expression of Lisp.

4. Conclusion

We have devised an algorithm for inserting
injection operations to denotational specifica-
tions. No local binding mechanisms such as "let
am A ewa™y By ™ e WHETR awe''y are Dheluded
in SDL described in this paper. Extension of
the above algorithm to such expressions 1is
straightforward.

In a sense, our algorithm is based on a
compromise reached by restricting the class of
acceptable expressions to ones described in
Section 2.2 at the cost of generality. Although
the rule (E3) seems too restrictive at first
sight, it turns out to be no practical problem.
1f more general form of combination (e_ e) were

allowed, the types of ey and e, could not always

been deduced from the ctype of (e e,) alone. A
functional type should be prodd%e& for o
Aviel from litrle knowledge of the type of %O
This can be done in ML where we do not insert
injection coperactions. From this observation, we
have chosen the restricted class of expressions
for our specification language.

Mitchell [7] deals with polymorphic type-
checking with automatic coercions between types.
Allowable coercion there should be of the form
"a is coercible to B" where o and A are atomic
types. This is too restrictive for our purpose.

This work has come from an experimental
system by Tsuyoshi Ohira [10] in which the
algorithm for ctypechecking and insertion of
injection operations was partly implemented but
not formally treated.

We plan to construct an efficient system
for semantics prototyping in which our type-
checker will be incorporated.

References
[1] Bodwin, J 4 Bradley, Ly Kanda, K.,
Licle, D, and Pleban, U., "Experience with

an experimental compiler generator based on
denotational semantics", Proc. ACM '82

Symp. on Compiler Construction, SIGPLAN
Notices Vol. 17, No.6, June 1982, opp.
216-229,

[2] cardelli, L., "Basic Polymorphic Typecheck-
ing", Polymorphism, Vol. 2, No. 1, 1984.
[3] Chujo, H., and Takeichi, M., "Porting ML on
a New Machine'", Proc. 28th Symp. of
Information Processing, 1984, pp. 427-428,
(In Japanese), also "VAX-Unix ML" developed
by Luca Cardelli, Bell Labs, March 1983,
[4] Gorden, M. J. C., The Denotational Descrip-
tion of Programming Languages, Springer-—
Verlag, 1976.
[5] Gordon, M. J.,
P., Edinburgh
Verlag, 1979.
[6] Milner, R., "A theory of type polymorphism
in programming', J. Comput. Syst. Sci., No.
17, 1978, pp. 348-375.
[7] Mitchell, J. C.,

Milner, R., Wadsworth, C.
LCF, LNCS 78, Springer-

"Coercion and Type

Inference (Summary)", 1l1th ACM Symp. on
POPL, 1984, pp. 175-185,

[8] Mosses, P. "SIS — Semancics Implementation
System: Reference Manual and User Guide",
DAIMI ~ MD-30, Department of Computer
Science, University of Aarhus, Denmark,
1979,

[9] oOhira, T., and Takeichi, M., "A Language
Development System', Proc. 28th Symp. of
Information Processing, 1984, pp. 329-330,
(In Japanese).

[10] Ohira, T., A Language Development System,
Master's thesis, 1984, The University of
Electro-Communications (In Japanese).

[11] Robinson, J. A., "A machine-oriented logic
based on the rescolution principle', J. ACM,
Vol. 12, No. 1, Jan 1965, pp. 23-49.

[12] Stoy, J. E., Denotational Semantics, MIT
Press, 1977.

[13] wand, M., "A Semantic Prototyping System",
Proes ACM "84 Symp. on Compiler
Construction, SIGPLAN Notices, Vol. 19, No.
6, June 1984, pp. 213-221.

==] 9 —

