A Functional Machine for Fully Lazy Evaluation
(Extended Abstract)

Masato Takeichi

Department of Computer Science
The University of Electro-Communications
1-5-1 Chofugaoka, Chofu-shi, Tokyo 182

ABSTRACT

In order to explore the applicability of full laziness in functional programming, we have
develcped an abstract machine called Fully Lazy Functional Machine (FLFM). The machine is a
variant of the SECD machine suitable for evaluating expressions written in Fully Lazy Lisp
(FLL). This paper describes the structure of FLFM and algorithms for transladng functional
languages into an intermediate language FLL, and for compiling FLL expressions inte FLFM
code which can be executed using a small interpreter. It is possible, however, to generate code
for conventional compurers from FLFM programs to gain efficiency. The implementation tech-
nique described in this paper is useful to generate efficient code for a wide class of funcdonal
languages. Actual implementation on the MCE8000 is also described.

1. Introduction

Hughes [7] introduces so-called fully lazy
evaluaton of applicative expressions in relation with
combinators. Full laziness implies crdinary laziness in
[3,4]. Among others, it has an important property
that every expressicn is evaluated at most once,
whereas in ordinary lazy evaluaton scheme only the
expression passed as argument to function is evaluated
at most once. Hughes also describes an algorithm that
translates applicative expressions with lambda abstrac-
tion inte fully lazy form. Takeichi [11] describes an
extended algorithm that deals with expressions with
local declaradons. We will call this process lambda-
hoisting after the code-hoisting technique [1]. A simi-
lar but different transformation technique called
lambda-lifting is described in [9].

We begin with a review of the translation algo-
rithm to clarify our intention to design a functional
machine for fully lazy evaluadon. In Section 2 we
will specify an algerithm that translates Lispkit Lisp
[5,6] expressions into Fully Lazy Lisp (FLL) expres-
sions. A machine model for fully lazy evaluation
which we call Fully Lary Functional Machine (FLFM)
will be defined in Secten 3. Rules for compiling FLL
programs to generate FLFM instructions will be
described in Section 4. And an implementation
method of FLFM with code generadon for a conven-
tional compurer will be explained in Section 5.

2. Lispkit Lisp and Fully Lazy Lisp

Lispkit Lisp is a small functonal language of
which syntax is borrowed from Lisp and semantics is,
however, completely different from that of Lisp.

Lispkit Lisp is purely functional and excludes side-
effects such as serg in Lisp. A recent version of
Lispldt Lisp adopts lazy evaluation semantics as stan-
dard and provides a special mechanism for eager
evaluation. Many programs including a compiler and
a text editor have been written and published [6]. We
have chosen Lispkit Lisp as our source language to
explore the applicability of full laziness in practical
funcdonal programming.

2.1, Lispkit Lisp
Let ey, ¢y, - -+ stand for Lispkit Lisp expres-
sions, and x,, x,, - - - for variables. Then, a Lispkit
Lisp expressicn e is either
(LX1) an integer n, or a symbol s representing
itself,
(LK2) (quore eg) of which value is the expression ey,
(LK3) (ege; '+ e,), which is an application of
(curried) function e; to arguments ¢, ‘-,
En .

(LK4) (lambda (x; ' -+ x;) eg) for lambda expres-

sion
Axy o X g
(LKS) (leteg(x).e) -« (x, .¢,)) for declara-
tion

ep where x, = ¢
and ¢+ and x_ = ¢

or

(LKS) (letrec g (x, . &) -~ - (x, . e,)) for recus
sive declaraton

¢y whereree x = €

and --- and x =e¢, .

2.2. Fully Lazy Lisp

The targer language of translaton is a yet
another Lisp called Fully Lazy Lisp (FLL). Translat-
ing Licpkit Lisp programs into FLL programs aims at
implementing full laziness by ordinary lazy evaluation
of FLL.

Fully Lazy Lisp is defined as follows: Let e,
ey, - stand for FLL expressions, and x;, x5, + -+,
Mi D% > for variables. An FLL expression is
either
(FLL1) aninteger n, cr a symbol s,

(FLI2) (quote eg),

(FLL3) (egey - -+ e,),
(FLL4) (lam (yy - - y,) eg),
or
(fam* (yy =+ ¥) eg
(FLLS) (xypeeg) o Gz el))

2.3, Translation of Lispkit Lisp into Fully Lazy Lisp

The translation algerithm, which we call
lambda-hoisting, of Lispkit Lisp into FLL is an exten-
sion of Hughes’ algorithm for finding super-
combinators of applicadve expressions [7].

3. Fully Lazy Functional Machine

In this section we will first explain design prin-
ciples of our machine model, called Fully Lazy Func-
tional Machine (FLFM), for evaluatng FLL programs.
It can be considered as a variant of the SECD machine
[5,10] specifically designed for our purpose. Then we
will specify the rules for compiling FLL programs into
FLFM code.

3.1. Design Principles
(P1) Make full use of the linear environment struc-
ture.

(P2) Closure structure should be constructed with lit-

tle effort.

Partially parametrized function should be
represented as a sharable value, and the
environment should have a sharable structure.

(P3)

3.2. Machine Structure

The FLFM machine consists of four registers S,
E, C, and D, each of which holds a list representing
the stack, the environmeni, the conrrol code, or the
dump, respectively, It should be noted that the SECD
medel of FLFM is a conceptual one; the stack need
not be of the list strucrure in actual implementation,
for example. We will discuss about implementation

derail in later sections.

We will follow the notation used in [5] w©
specify the machine by state transidon as

S E € Db - § E € b
To describe the change of the environment E, we will
use the convendon thar £, means the i-th link of E,
and *E, the contents, or the value, of the i-th element
cf E. Note that arguments passed to functions are
meved from the stack § to the environment so that
their values are to be referenced as *E,, not as E,,
We will denote a closure consisting of code € and

environment E by [C:E], and an empty list by &
instead of nil.

3.2.1. Load Instructions
Load Constant

S E (LD SEXPx.C) D

-~ (x.5) E ¢ D

where x is a quoted S-expression.
Load Combinator

S E (LDCOMBx.C) D

- ([c®].5) E € D

where x is a global combinator or an
ancnymous combinator of the form (FLL4) or
(FLLS), and C' is the code for x. Combinator
is loaded on the stack as a closure with empry

environment.
Load Closure
s .E [[D.CLOSC .C) B

- ([CE].5)

where C' stands for the code to be evaluated
under environment E.

Load Argument

S E

E ¢ D

(LD ARGi.C) D
-~ (*E,.S5) E € D

3.2.2. Environment Control Instructions
Extend Environment

(x.5) E (EXTENV.C) D
- & {(3.EY £ D

& E (EXTENV.C) (SE'C.D)
= ([C*E] S°Y B ¢ D

where C'' stands for (EXT_ENV .C). The
second rule shows how partially evaluared fune-
tion is obtained.

Extend Recursive Environment

5 E (EXTREGENV €".C) B
= & B B D

where E' peints to the same cell as E, e,
E'=E, with *E being moved to newly created
cell £', and *E'g=[C":E'), E';4 =E, for i=L
In case of E=d, E' is obtained by simply
extending E using a new cell with

*E'y=[C":E']. This instrucdon effectively
creates dreular structures for recursive declara-
ton.
3.2.3. Evaluation and Application Instructions
Evaluate

(x.5) E (EVAL.C) D
- [z.8) E € D
where x is not a closure,
([b=x].S) E (EVAL.C) D
- (x.85) E € D
where [6x] is an indirection closure described
below,
([C"E'].5) E (EVAL.C) D
- & E C (SEC.D)
Apply
(x. &) £ @ [SEC.D)
- (x.5') EE C D
where x is not a closure.
([C'E'].5) E & D

- § B C D

This instucdon, acrually the end of code
sequence, causes retwrn to the caller of recur-
sive evaluadon if the elerment at the top of § is
not a closure, or otherwise applies the closure
to arguments on §.

Updare

(x.5) E (UPDATE{.C) D
- (x.8§8) EE € D

where E'=E and E’;=E, for every j; when *E,
is a closure, contents of the cell pointed to by it
is changed to an indirection closure with its code
part ¢ and environment part x. In all cases, *E,
is assigned x, The indirection closure is used to
realize full laziness in FLFM.

The second case of EVAL Instruction deals with
evaluation of the indirection closure. Garbage collec-
tor can eliminate indirecton closures in actual imple-
mentation.

3.3, Primitive Functions

There are several primitive functions in Lispkit
Lisp and FLL. They are actually combinators in the
sense that they are closed and do not have any free
variables. In this section, we will show how these
primitive functions can be implemented by a small ser
of FLFM instructions. In later sections, we will dis-
cuss about some optimization rules to gain efficiency.

3.3.1. Arithmetic and Boolean Operations

We first consider the combinator add for addi-
tion of two integers. Assume that we have an instruc-
tion ADD which adds two elements on the stack § and
puts the result on the top of .

add =
(EXT_ENV ; EXT_ENV ;
LD_ARG 0 ; EVAL ; UPDATE 0 ;
LD ARG 1 ; EVAL ; UPDATE 1;
ADD)

Other arithunetic operadons such as sub, mul,
etc., and Boolean operatons as eg are defined quite
similarly.

3.3.2. List Operations
Primiave functions for the list structure differ a
bit. The consouctor econs for list cells should not
evaluate argunents in lazy evaluation [5].
cony =
(EXT_ENV , EXT_ENV ;
LD _ARG 0 ;LD_ARG 1;

CONS)
(xy.S) E (CONS.C) D
- ((xy).5) E ¢ D

The selectors head and tail need to evaluate the
argument and take an appropriate compenent cf the

pair.
head =
(EXT_ENV ;
LD _ARG 0 ; EVAL ; UPDATE 0 ;
CAR)
tail =
{ EXT_ENV ;
LD_ARG 0 ; EVAL ; UPDATE 0 ;
CDR)
where CAR and CDR are FLFM instructions.
((xy).8) E (CAR.C) D
- (x.8) E € D
((xy).5) E (CDR.C) D

- (».5) E ¢ D
where x* and y' are evaluated components of (x.y).

The predicates atom and null over list structures
are defined similarly.

3.3.3. Conditional Operation

The combinator {f can be written using a condi-
tional instruction /F as
tf =
(EXT_ENV ;
LD_ARG 0 ; EVAL ; UPDATE 0 ;

IF)
The instruction /F selects either if true or if false
accerding to the value at the top of the stack:

(true.S) E (IF) D

- ([iferue:d].S) E & D
(fnlse.5) E (/F) D

-~ ([if false:d).5) E & D

The combinators if_true and if_false are defined as

if_rue =
(EXT_ENV , EXT_ENV ;
LD ARG 1 ; EVAL ; UPDATE 1)

if_false =
(EXT_ENV ; EXT_ENV ;
LD _ARG (O ; EVAL ; UPDATE ()

4, Compilation of FLL inta FLFM Cade

Rules for compiling FLL expressions into
FLFM cede is simpler than that for compiling Lispkit
Lisp expressions into ordinary SECD machine.

4.1. Compilation Rules
Let
p= [“m’-‘;. P ,up}

stand for the sraric environment 1o lookup variables in
lexical-addressing. We will use the netaton in [5):

e*p

represents FIFM code for FLL expression e with
respect to the environmens p, and

(s} [Csg) | oo (s,)
represents
(:ficty, wooe @y

And we will use curly braces {} to group code
sequences, and EXT_ENVE 1o represent a sequence of
EXT_ENV instruction of length k. The basic compila-
tion rules can be described as follows.

(C1) Integera
n*p = (LD_COMB n)

Symbol s
A ugyuy, v e ,up] =
(LD_ARG 1)

if e=u, in p for some {
(LD_COMB 5) otherwise
(C2) Quotation
(quote eg)*p = (LD_SEXP e;)
(C3) Applicatve form
(egey -+ - e)% = ;
(LD_CLOS (% | =+ | ey |egwp})
(C4) lam combinator
“‘1”1(."1 iR J}]eu)'P .
(LD_COMB { (EXT_ENVk) | egop’ })

where p'=[y,, -+ - y].

(CS) lam* combinator
Uam=(yy - -« yidegleyeg) - - (xp.e,))% =
(LD_CGMB { (EXT_ENVE)
| (EXT_RECENV e)*p’) |
* | (EXT_RECENV &, "0} | ego0’ })
where pr=[x vz o il
(C8) Auxliary rule
cop =
(LD_ARG i) | (EVAL) | (UPDATE i)
if e=w,; in p for some i

e*p | (EVAL) ctherwise

where p=[ug,ky, -+ ,uy].

Ncte that eep represents a code sequence to evaluate
the expression e. I ¢ is an argument held in the
environmens, it should be replaced by the result of
evaluation. In the general compilation scheme, the
head term of the applicative form is forced w0 be
evaluared.

4.2. Optimization

The compilation rules described above do not
use any specific information about primitive funetons.
If we had used such informaton, we could obtain
berter FLFM code. Therefore, we will discuss some
rules for cptimization in this secton. In doing so, we
need to inoduce a few FLFM instructons to gain
efficiency,

4.2.1. Update Operation

The first rule we consider is for the code

sequence
LD _ARG i ; EVAL ; UPDATE |

which is generated for an argument at the front of the
applicative form, Introducing a new FLFM instruction
LD _ARG_EVAL eliminates redundant operaticns to
locarte the i-th argument on the environment.

S E (LDARGEVALi.C) D
= (E5 E € D

if *E, is not a closure, or

S E (LDARGEVALI.C) D

- & E C (SE(UPDYEC.D)
i *E,=[C"E].
The instruction UPD is never generated by the

compiler.

(x.§) E, (UPD) (EC.D)

= .5 E € D

with *E,i=x as shown in the rule for UPDATE.

4.2.2, Evaluate Operation
For a code sequence

LD_CLOS C' ; EVAL
it is observed that

S E (LD CLOSC EVAL.C) D
- ([CE).5) E (EVAL.C) D
- & E C (SEC.D)

Thus, no closure is required if a new inswucteon
LD_CLOS_EVAL is introduced.
§ E (LDCLOSEVALC .C) D
- & £ C (SEC.D)

Mereover, it should be noted thar the compiladon
rules allow to write

[Lety &g » iv B VR d A0
= (DCLOS (% | -+ |e*p €0 |
€| e e'gw})

"This corresponds to the fact that
(el gty oo v gl Yieg v v Q)

is semandcally equivalent to a simpler form
(e'ge’y -+ ety "o g,)

Therefore, any applicatve expression can be repeat-
edly transformed into a simpler form untl the head
term is either 2 combinator or an argument.

Similar simplificadon can be applied to the case
where an anonyrmous combinator appears at the head
of the applicative form. 'We can see that

§ E (LD_COMBC EVAL) D
- ([c0].85) E (EVAL) D
- ¢ & C (SE.D)
- ([c]).8) E & D
- 5§ ¢ C D
Note that C' begins with EXT_ENV and evaluation
with empty stack results in immediate rerurn with a

closure. Thus, the EVAL instruction following
LD_COMB is redundant and may be omitted; that is,

LD_COMB C' ;EVAL
can always be simplified to
LD_COMB C* .

If a new instruction, CALL, is introduced for applying
combinators, closures are not created by replacing
(LD_COMB C' EVAL) with (CALL C").
§ E (CALLC) D
- § ¢ C D
From the above discussion, we can rewrite the
compilaticn rule (C6) as
(C8') Auxiliary rule
e =
(LD_ARG_EVAL i)
if s=y, in p for some i
e*p if e is a quotation or a combinator
e*p | (EVAL) otherwise

where p=[ug,uy, - - - ,u,]. When esp appears at the
head cf an applicadve fcrru. further optimizaton can

be taken as described above.

4.2.3. Primitive Operations

Suppose that we have a term (add e, e;). If we
use the knowledge about the arity of add, the enviren-
ment consisting of e; and e, is not necessary. In such
a case, we can generate FLFM code as

(add eq eg)*p = {eyop | eyop | (ADD) } .

Similar rules can be applied to other arithmetic and
Boclean operations.

For the list constructor cons, and for the selec-
tors head and tail, we have

(cons ey £3)%p = { ;™p | e,"p | (CONS) }
(head e,)*p = { e;op | (CAR) }
(rail ,)*p = { ;3 | (CDR) }

Given the conditional form (if e, e, e,), we can
optimize the term when three arguments are supplied
together. Recall that

(if e))* = { ey | (TF) }

and IF yields a combinator if_rue or if_false, which
in rumn selects e, or e, to be evaluated. A simple way
to optimize the code for the above form might be to
provide FLFM inscucdons for directly evaluating
alternadves. However, these instructions fail to
update the values of e, and e, given as arguments.
Qur solution to this problem is to intreduce an FLFM
instruction SELECT

(true .5) E (SELECTC,C;) D
- S E G D

(false . §) E (SELECTC;Cy) D
- § E C D
and to compile the term as
(ifeyegeq)p =
{ eop | (SELECT) | egop | e3op }

5. Implementation of FLFM

In this secdon, we will look over an FLFM
implementation on a conventional machine MC68000.

As mentioned in Secton 3.2, there is no need
to use the list structure to represent every object held
by the registers §, E, C, and D. In the first place,
the stack § can be implemented by usual hardware
stack manipulated by auto-increment and -decrement
addressing of MC68000. The code C is a fixed code
of MC68000 instructions, and controlled by the pro-
gram counter. The dump D can be embedded in the
stack using the frame pointer indicating stack frames
for recursive activations of functions. To atain the
sharing property (P3) of the environmenc E, it is rea-
sonable to make the envircnment using the list struc-
ture,

Each value is represented by a 32 bit word of
which first 8 bit byte is used for the rag part indicating
value types. Remaining 24 bit field contains unboxed

738_

(integer, character, or Boolean) value, or a pointer
a cell allccated in the heap store. Four of the address
registers of MC68000 are deveted to maintaining §,
E, D, and the heap store. Figure 1 illustrates the
stack, the heap, and pointers. Tags are not shown in
the figure.

Stack Heap
(grows upwards) (grows downwards)

Rl

e 1
&1 7
5)
= (s
o o STE C \
[]5’]3. old p s |
old ep L_ /_/ep
old pe ™(E)
ke hip

S=(2(3.1)[C:E]) |

-

Figure 1

E=([C:E](3.1)5)

Most of the FLFM instructions are expanded
using macro facilides of the assembler. And com-
monly used instruction sequences like exr_env, apply,
etc., are supplied as run-time routines. An example
of MC6BOCO code is shown in the Appendix. As for
the performance, the code thus cbrained runs as fast
as about 3000 function calls per second on SMHz
MC68000 machines. This exceeds the execution
count, about 2000, by a micro-coded interpreter of the
SECD machine for Lispkit Lisp on the Perq [6].

We shall leave further implementation details
and experimental results to [13].

6. Conclusion

Our primary concern in this paper is to develop
compilation technique for fully lazy evaluation on con-
ventional machines, Once we have cbrained expres-
sicns of the Fully Lazy Lisp form, we can evaluate
them in fully lazy way using ordinary lazy evaluation
mechanism provided that it allows functicn applicaton
of insufficient number of arguments. Our FLFM has
been designed as a basic model of fully lazy evalua-
tors. As shown in the secrion on actual implementa-
tion, code generation from FLFM code turns out to be
much easier than from ordinary SECD code. This
enables us to enhance portability of compiler systems.

Jehnsson [8] deals with a compilation scheme
for ordinary lazy evaluation. It is, however, different
from ours in several respects. Among others, it does
not support full laziness, as is the basis of our
method.

Although an advantageous feature of full lazi-
ness in practical problems has been demonstrated in

[12], further investigaticn should be necessary. We
believe that our compiladon technique is exmemely
useful for exploiting the applicabiliry of full laziness

References

1. Aho, AV., and Ullman, J.D.: Principles af
Compiler Design. Addison-Wesley, 1977.

2 Burge, W.H.: Recwrsive Programming Tech-
niques. Addiscn-Wesley, 1975

3 Friedman, D.P., and Wise, D.S.: Cons should
not evajuate its arguments. Awtomaig,
Languages and Programming, 257-284. Edin-
burgh University Press, 1976,

4. Henderson, P., and Morrs, JM.: A lazy
evaluator. Proc. 3rd Symp. on Principles of
Programming Languages, 95-103 (137€)

S Hendersen, P.: Funcrional Programming: Appli-
cation and [mplementation. Prentice-Hall, 1980.

6. Hencerson, P., Jones, G.A., and Jones, S.B.:
The Lispkit Manual. Technical Monograph
PRG-32, Oxford University Computing Labora-

tory, 1983,
7 Hughes, R.J.M.: Super-combinators: a new
implementation methed for applicative

languages. Proc. 1982 ACM Symp. Lisp and
Functional Programming, 1-10 (1982)

8. Johnsson, T.: Efficlent compilation of lazy
evaluation. Proc. SIGPLAN '84 Symp. on Com-
piler Construction, 58-69 (1584)

9. Johnsson, T.: Lambda Lifing. Programming
Methodology Group Memo, Chalmers Univer-
sity of Technelogy, Goteborg, 1985,

Landin, P.J.: The next 700 programming
languages. Comm. ACM, 9, 157-154 (1966)
Takeichi, M.: Evaluation of combinator expres-

sions. Proc. lst JSSST Annual Conference, 213-
222 (1984). In Japanese.

Takeichi, M.: Partial Parametrization Eliminates
Multiple Traversals of Data Smructures. Techni-
cal Meme, Deparument of Compurer Science,
The University of Electro-Communications,
1985,

Takeichi, M.: Implememation of Fully Lazy
Funetional Machine. In preparation.

10.

1T

13,

Lispkit Lisp Source

(lewrec filter

(filter Lambda {p)

M
(if (p (bead 1)

Appendix

(cocm (head 1) (filter p (tail 1))

(Filter p (il 1))))

n

FLFM code

s0:
sL

34

56:

58:

§9:

§10:

Call sl
EXT_RECENV 52

LD_ARG_EVAL 0
APPLY

LD_ARG O

CALL 53
EXT_ENV

EXT_ENV
LD_CLOS 54

LD_ARGO
CALL 55

LD_ARG 0
LD ARG _EVAL 1

AFFLY
EXT_ENV
EXT_ENV

_E
LD_CLOS_EVAL 58
SELECT §7 86

LD_CLOS 59

LD ARG _EVAL 1

AFPLY
LD_CLOS §6

LD_CLOS 510

CON3
1D_CLOS $10

LD_ARG_EVAL 2

AFPLY
LD_ARG_EVAL 0

CDR
LD_ARG_EVALD

CAR

(81
{am® Qfilter{tilter.52))

{53 fileer)

{lam{f p){$5 p 34}

it p)

i(lam{r g 1)(if 33 §7 56))

g 59)

+(cons §10 $6)

(e $10)

H{tail

s(head)

Fully Lazy Lisp Source

((lam*® () Flter
(Filter (lam (f p)
{(lam (r g T)
(if (r (head 1)}
(coms (head 1) (g (tail 1))
(g (i 1))
()
)
(tileen))))
MC68000 code
50: suba] 9,5
S1: lea $2.40
bar ext_recenv
move.| ep,al
ber Id_arg_eval
bra apply
$2: mavel 4(ep),-(2p)
suba.l e.ep
§$3: bw ext_env
bar ext_cav
move.l bp,-(2p)
lea $4,30

move.l al,(hp)+
move.| ep,(hp)+

move.| 4(ep),<(ap)
nuba | p,p
ben 38

$4: movel 4(ep),-(ap)
mave.1 epald
move.l (a0),a0
ber Id_arg_eval
bra apply

$5: ber ext_eav
bar ext_eav
bar ext_env
lea 58,20
ter 1d_clos_eval
cmgi | #TRUE, (sp)+
beq 57

36: mave.l hp,-(ap)

a0
move.] (=0),a0
ber ld_arg_eval
bra apply
§7: movel bp,-(ap)}
lea $6,00

move.| ep,al
move.l (a0),a0
move.| {a),a0
bt 1d_nrg_eval
bra apply

9 movel cpal
ber Id_arg_eval
bra odr

$10: movel ep,a0
ber Id_arg eval
bra car

