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ABSTRACT

We show how synchronization affects the evaluation partial order in parallel func-
tional programs and examine in detail the synchronization primitive proposed by Hughes.
Despite the fact that it may cause deadlock, it is proved useful even on a single processor
implementation because it makes programs use less space. Moreover on parallel proces-
sors it increases parallelism and makes the otal evaluaton time shorter. Instead of trying
o prove programs free of deadlock, we give a practical method 1o construct deadlock-
free programs. At present we do this informaily, but our method based on striciness
analysis and annotation of parameter mechanism seems promising. We also propose a
translation rule for a higher level notation into parallel code which will run synchro-
nously. This relies on an implicit synchronization mechanism inherent in strict functions.
Execution profiles on an experimental system support our idea.
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1. Introduction

It has been suggested that functional paral-
lel programming is much casier than writing
This belief is
founded on the fact that any functional program

imperative  parallel programs.

has an important property called referential ran-
sparency; the meaning of a program (expression)
depends only on the values of its conslituent
cxpressions, and these subexpressions may be
freely replaced by others with the same value.
The values of such subexpressions depend only
on the context and irrelevant to any procedures
for obtaining them or the order of replacing
expressions with their values. Hence functional
programmers feel no concern about whether a
particular cxpression is evaluated before others or
not. This holds both for sequential and {or paral-
lel programs.

It is observed, however, that the order of
evaluation has significant effect on the efficiency.
Finding an optimal evaluation order is difficult
even in the sequential case. In eager evaluation
all arguments o a function arc cvaluated before
the function is called. Since many imperative
languages adopt this strategy for long years, the
behavior of functional programs evaluated this
way is casily understood in analogy with impera-

tive programs. Another strategy called lazy

“This material is based upon work supported by Grant-in-
Aid for Scientific Research #01550278.

evaluation delays evaluation of every argument
of a function until it is required in the body of the
funcuon. The nen-sirict functional languages
based on lazy evaluation have recently attracted
considerable attenton in their unique features that
are not supported in other languages. Everything
has ils drawback, however. A weakness of the
non-strict languages is the dilficulty of rcasoning
about their space and time behavier [Peyton-
Jones87, Chapter 23]. There have many works
done for correcting the weakness. For cxample,
strictness analysis [Mycrofi81] allows the oplimi-
zation of programs by identifying the parameters
that can be evaluated cagerly and avoiding the
need to build data structures for lazy evaluation.
Program transfonmation based on lazy evaluation,
c.g., [Takeichi87] opens up oppelunitics for
reducing the resource consumption.

Parallel evaluation of functional programs
extends these evaluation strategics. As in scquen-
tial evaluation, the evaluation order is irrelevant
10 the meaning of programs bul it has practical
importance. One of the most promising works in
non-strict  parallel functional programming i3
included in [Hughes84). ‘Hughes suggests that
even on a single processor implementation some
form of parallelism is necessary for functional
run Such  quasi-

programs 1o cfficiently.

parallelism may improve scquential programs.
In this paper we show how the cvaluation
partial order of non-strict parallel languages is



controlled by synchronization mechanisms. Scc-
tion 2 introduces primitive functions for parallel-
ism proposed by Hughes [Hughes84]. Experi-
mental results that support his statement are also
shown. In Section 3 we give a pragmatic solution
for avoiding deadlock that Hughes® synchroniza-
tion primilive may cause. Implicit synchroniza-
tion mechanisms inherent to strict functions in
lazy cvaluation are attractive because they never
cause deadlock at all. We show in Section 4 how
a higher level notation is translated into parallel
code that behaves much like programs using

explicit synchronization primitives.

2. Evaluation order and synchronization
Burton proposes a method with which a

functional programmer can control the evaluation

partial order of parallel programs [Burton87].

The aim of his method is to

. incrcase parallelism

. reduce storage requirements, or

° reduce the total amount of work performed.

He uses a combination of three parameter passing
mechanisms, i.c., call-by-value, call-by-name,
and call-by-speculation, which is annotated at the
The

mechanism is considered as an cager form of

function  definition. call-by-speculation
the default mechanism

adopted by non-strict languages, Controlling the

call-by-neced that is

evaluation order this way relies on how a function
deals with ils parameters before the function is
called. Omission of call-by-need may cause
difficultics in applying this method to non-strict
languages where expressions are not evaluated
until their values are actually required and expres-
sions are replaced with their values after they are
evaluated.

Hughes proposes an alternative method
which is simpler and is applicable to non-strict
languages [Hughes84]. The expression

pare

is equivalent to e but evaluated in parallel with
the expression containing this construct. Thus

f (pare)
is semantically equivalent to
fe

but evaluates e in parallel with applying f 10 €.
The argument passed to the function f might be
wholly evaluated or more possibly in a transient
state. Hughes call this paramcter mechanism
call-by-parallel-evaluation. As an implementa-
tion technique, the future structure of Multilisp
[Halstcad86] might be used. It would be a betler
idea, however, to take such an argument as a
thunk with a transicnt state, because these struc-
tures are already present in lazy evaluators,

The primitive par introduces speculative
parallclism without any fixed principle. If not
used appropriately too many lasks might be
spawn o cvaluale unnecessary  Xpressions.
Strictness analysis [Mycro(t81] works in this
situation. It derives the information from the pro-
gram text and decides whether arguments will

certainly be required.

Hughes proposes a synchronization primi-
tive synch as a funcuon. The value of

synch e
is a pair
(e.e)

except that e will not be evaluated until both the
f5t and the snd of (synch e) are required. For
example, if we write

let (x,y)=synch{1+2) in
par (fac x) + par (fib y)
then we are sure that 142 will not be evaluated

until both fac and fib are ready to use the result.
In fact, if the functions are defincd as




fac x = if x=0 then 1 else ...
fib x = if x<=1then 1 else ...

then demands are transmitted o 142 alter two
processes reach x=0 and x<=1, respectively., The
process that arrives earlier at that point will be
suspended until the other arrives. The two
processes are thus synchronized according o the
demands.

An important application of the function
synch is to produce a synchronized list syn-
chlist:

synchlist [] = ([].[1}
synchlist (x:xs) =
let (xs1,xs2)=synchlist xs
and (f1,12)=synch x in
((11;(xxs1)),(12;(x:x52)))

where (f;€) means that evaluate f and wait for
evaluation to finish, then return €. The synchron-
ized list is useful for evaluating two funclions in
parallel and consuming the list clements at the
same rate. For example,

average xs = (sum xs)/(length xs)

may be converted into a parallel program which
uscs bounded space if we usce synchlist:

average xs =
let (xs1,x52)=synchlist xs in
par (sum xs1) / par (length xs2)

A parallel program obtained by simply annotaling
par at the two operands of / cannot be evaluated
in bounded space; the elements having been con-
sumed by the faster process must remain in the

heap until they are used by the slower process.

It should be noted that this method does not
alter the program structure, and as far as the value
of the program concerned we may ignore par and
treat (synch e) as (e,e). It is, however, dilficult
lo decide whether a given parallel program using
synch is deadlock-free. We show a practical
solution to this problem in Section 3.

To illustrate the effect of the use of syn-
chlist in practice, let us consider the definition of
a functional quicksort program. Hughes analyzes
this program in detail from a theoretical view
point.

sort [] =]
sort (x:xs) =
sort [y]y<-xs;y<x] ++
(x © sort [yly<-xs;y>=x])

where [e|x<-xs;...] is the list comprehension
notation by Turner [Tumer85] and ++ is an
operator that appends a list 1o another list. We
assume  here that list comprchensions  are
translated into sequential code. Anothier transla-

tion rule will be discussed in Section 4.

A parallel version of the program without
synchlist is

sort [] =]
sor (x:xs) =
par sort [y|y<-x5;y<x] ++
par (x : par sort [y|y<-xs;y>=x])

which sparks 3n processes to sort a clements.
Figure 1 shows a parallelism prolile obtained by
an execution of the above program writicn in PFL
(Parallel Functional Lisp), which is implemented
on an ELIS workstation using TAO [Takcu-
chig6]. Created processes are mapped onto tasks
of TAO which arc exccuted by a single processor
in urn. Task generation timings are illustrated as
if events had been taken place at an equal interval
of time and do not represent actual peried of time,
Instead the ratio of the CPU time is shown at the
right. It is obscrved that most of the time is spent
by a few tasks and improvement of runtime
would not be expected if many processors
become available.

A synchronized version ol the quicksort

program looks like



sont{] =]
sort (x:xs} =
let (xs1,xs2)=synchlist xs in
par son [yly<-xs1;y<x] ++
par (x . par sort [y|y<-xs2 y>=x])

Hughes analyzes this program and concludes that
it will sort n elements in time proportional O (n}
using O (log n) processors in the best case, or
O (n) processors in the worst case. The parallel-
ism profile is shown in Figure 2. It should be
noted that the CPU time is shared by many tasks
which perform significant amount of work. The
total runtime will become much shorter if these
tasks are executed on different processors.

Although synch has been devised for mak-
ing programs use less space, synchronization
leads to an effective way of sparking tasks with
appropriate granularity. Experiments show that
synch may control cvaluation partial order of
lazy evaluation to some extent in spite of its sim-

plicity.

3. Deadlock-free synchronization

As described in [Hughes84], par intro-
duced in the last secton does not affect seman-
tics, but synch may cause deadlock, although it
cannot otherwise affect “the values computed.
Hughes suggests that temporal logic might be
appropriate to prove programs free of deadlock.
To do so, for a given program using synch, it is
necessary to attach logical formula to the program
components and then prove the formula for the
whole program. An alternative approach Lo writ-
ing safe programs would be to combine par and
synch in a way that the program thus obtained
are always deadlock-free. We show here how
simple application of strictness analysis helps us
to find the rules for constructing safe programs.

When we want o write parallel programs,
we usually find out several tasks to be performed
independently but communicating each other.
For simplicity assume that our parallel program is

described by two functions f and g both of which
takc a common argument o communicate, Con-

sider a sequential program

Hx=F{fx)(gx)
wherefx=..andgx= ..

If we want to use a parallel version, a program
like

H x = F {par (f x)) (par (g x))

would be obtained from the sequential one. In
order to cvaluate (f x) and (g x) synchronously,

we have

Hx =
let (x1,x2)=synch x in
F {par (f x1)) (par (g x2))

Is there any possibility of deadlock in exccuting
this program? Yes. If cither of the function
bodies f and g happens to [ail to access the argu-
ment, the other function cannot procecd any

more.

Strictness analysis [Mycroft81] may be
used to determine whether arguments of a func-
tion will be eventually evaluated or not. Consider
first functions on f(lat domains such as the

integers. We use an abstract domain
DY = [Tl}

containing (wo elements. Between the clements
T and | the order is defined as

JcT

Moreover, there should be an abstraction function
which maps x€ D into x” € D" salisfying the pro-
perty

xcy implies x* cy*

Every non-bottom element in D maps onto T, and
the bottom clement of D maps onto the bottom
clement L of D*. A function f is strict with

respect to its argument X if




ffl=4

where f* is an abstract function derived from f.
Intuitively this means that if f takes an argument x
of which computation will never terminate, then
(f x) will never terminate. It is equivalent o say
that the value of the argument is certainly
required in the body of the function.

In the case of our parallel program, if either
of f or g docs not satisfy

=il
gfl=1

then deadlock cannot be avoided because cither
of them will not access the argument forever. In
order to0 ensure that the program becomes
deadlock-free, we have 1o do more. Since the

cquation like
=l

defines the least fixed point of the relation derived

from f, a function definition
fx=1x

also satisfies the equation of the abstract function
f*. In this case, we come across deadlock even
if f*1 = 1. What we have to do is to make the
strict argument of the function be called by value.
We write

f(val e)

to specify that the argument e is evaluated before
f is called. Consequently, we have a deadlock-
free parallel program

Hx=
let (x1,x2)=synch x in
F (par (f (val x1))) (par (g (val x2)))

provided that f and g are strict with respect to
their arguments.

If functions which deal with data structures
are considered, strictness analysis on non-flat
domains [Wadler87] may be used. Let us take a
parallel program using synchlist

(B

Hxs =
let (x81,xs2)=synchlist xs in
F (par {f (val xs1))) (par (g (val xs2)))

As in the case of flat domains, it will become
apparent that we have to evaluate strict arguments
in order 1o avoid deadlock. We have alrcady
annotated as such in the above program.

For striciness analysis of list processing
functions, needed is an abstract domain O™ for
the concrete domain D° of lists of which ele-
ments in D . Although Wadler explains how to
construct D™, what we need here is that D™
should have the bottom | and an element o
corresponding 10 non-termination and any infinite
list, respectively, and that the clements of that

domain form a chain

=

Ligeg o+

Strictness analysis described in [Wadler87] tells
us to what extent the argument can be safcly
evaluated. If 7* | = |, the argument of f may be
evaluated before the call; i.e., the function is strict
with respect 1o its argument. Similarly, if f% oo =
L, it is safe to evaluate the argument and 10 evalu-
ate the tail of this argument. Wadler says that
such a function is strict in the tail.

Simple calculation determines whether a
function f is strict in the tail. By continuity of the
list constructor function ¢ons or the operator
which are assumed non-strict by defauly,

floac f¥ (Tieo)

holds. See [Wadler87] for details. Hence we can
say that f is strict in the tail if f¥ (Ti)= 1. It
should be noted that strictness in the tail implies
strictness with respect to the argument.

Now we return to the discussion of our
parallel program. As we have done, arguments
must be annotated with val for the strict functions
fand g. Morcover we have to ensure that the tail
of the argument will always be evaluated pro-
vided that the functions are strict in the tail. To



do this we simply insert val to the tail of the data
constructor operator if any as

a:(valb)
As an example of analysis, consider a
higher order function

foldrfafl=a
foldr f a (x:xs) = f x (foldr f a xs)

This function can be used o define many func-
tions that traverse lists. I we wrile

R = (foldr f a)
and set x* =T and xs* =e=, we have
h* coc £ T (h" o0)
To find the lcast fixed point, we start with
h*yxs* = Lforanyxs®eD™
and iterate substitutions to have
R o= fET(RY o)

=TT ¢ T o)
=T TC (r ThY)

This tells that if
F*rizd
then
foldrt a

1s strict in the tail. That is, if f is strict with
respect 1o its second argument, (foldr f a) is strict
in the tail. In that case, a new definition

foldrfa[l=a
foldrf a (x:xs) = f x (foldr f a (val xs))

may be used to ensure that parallel programs with
synchlist are deadlock-free. The functions sum
and length used in the average shown in the pre-
vious section are defined using foldr as

sum = foldr (+) 0
length = foldrinc 0
where incxy = y+1

where both (+) and inc arc strict with respect 0
the sccond argument. Hence the program rewrit-

ien as

average xs =
let (xs1,xs2)=synchlist xs in
par (foldr (+) 0 xs1) /
par {foldr inc 0 xs2)

is also deadlock-free.

It is worth noting that the function map
defined as

map f{] =]
map f (x:xs) =fx:maptxs

is not strict in the tail. Consequently map alone
should not be used in synchronized parallel pro-
grams. Combinations of map and other functions
may become strict in the tail and may appear
safely in synchronized parallel programs with
annotations insericd as necessary.,

4. Implicit synchronization

As a simple example of implicit synchroni-
zation of lazy functional programs, consider

par (fac 5} + par (fib 10)

Two processes are created to evaluate (fac 5) and
{fib 10). Although the current process which has
created these two processes becomes ready to add
two values, it will be suspended until both
operands become available. In this way par and
strict functions like + achicve synchronized paral-
lel evaluation. Such a synchronization mechan-
ism is different from that of par and synch, how-
ever. If we understand that par behaves as the
Sfork operation of imperative parallel program-
ming, synchronization by strict functions is con-
sidered as the join operation.

In this section we show how implicit syn-




chronization works as the synch [unction. One
of the advantages of implicit synchronization is
that it does not require the programmer to do a
subtle business of inserting synch in the right
place. Morecover, the program does never cause
deadlock which is the most annoying problem of
the synch primitive.

It is not true that an arbitrary functional
program would run efficiently in parallel. The
program to be executed in parallel must contain
algorithmic parallelism. In modern {unctional
programming such inherent paralielism should be
specified in higher level notations. One of such
notations is a list comprehension, or a set notation
by Turner [Tumer85]. The expression

[f x| x<-xs]
specifics the list consisting of
F#pf 2 0 00f
if x5 stands for
AT JT LR 4

It would be casy to understand that such an
expression contains inherent parallelism; cvery
f x; may be evaluated in parallel with each other.
Of course, we have to assume that xs should
represent a finite list,

Translaling comprchensions into combina-
tions of map, filter, and concat is carricd out
according to the rules [Bird88, p.63]:

(1) [x|x<-xs] = x5
(2) [f x|x<-xs] = map [ xs
(3) [elx<-xs;pX; ...l =
[e|x<-filter p xs; ...]
@) [e|x<-xS;y<-ySs; ...] =
concat [[e|y<-ys; ...]jx<-xs]

The functions used in the translation are assumed
to be evaluated sequentially.

map f [} =[]
map f (x:xs) =1 x : maptxs

filterp [} =]

filter p (x:xs) =
x :fiterpxs, px
filter p xs, otherwise

concat [ =[]
concat (xs:xss) = xS ++ concat xss

[l++ys = ys
(X:XS)++YS = X:(XS++YyS)

Observing that the rule (2) translates inhcrent
parallelism into sequential list manipulation, we

replace it with a parallel version:

(2} [f x|x<-x8] = parmap { xs

parmap f[] =]
parmap f (x:xs) =
par {f x) : val (parmap f xs)

This introduces parallelism in a straight way.
Then, from where does implicit synchronization
come out? In the above wansformation, we do
nol use any strict functions at all except parmap
that spawns processes in turn. The reason why
striciness arises in the program is that a strict
function like show (o see the value on the termi-
nal is usually applicd at the top level of the pro-
gram. Strictness of the top level function is pro-
pagated to the function concal where actual syn-
chronization takes place.

As an example of the use of a parallcl
comprehension, we show exccution profiles of
two programs for the 5-queens problem. Both
programs arc contained in [Bird89]). The first
program looks like

queens 0 = [[]]
queens (Mm+1) =
[p++[n]|
p<-queens m;n<-[1..5];safe p n]

where safe is implemented directly by a function
in our program. Bird uses a list comprehension Lo

define safe. Another version of this problem is



sneeuq 0 = [[]]
sneeuq (m+1) =
[p++[n]|n<-[1..5];p<-ps;safe p n]
where ps=sneeugm

Figures 3 and 4 illustrate execution profiles. The
root task (the topmost process) consumes large
portion of the total CPU time because the top
level function show need to transmit demands to
the program body. Pulting this aside, remaining
CPU time is shared by many tasks much the same
way as in Figure 2. We may say that implicit
synchronization works well in the parallel list

comprehension.

5. Remarks

We have examined the property of the syn-
chronization primitive synch in detail. Although
Hughes originally introduced synch in order 1o
make parallel programs run in bounded space, it
appears that the use of synch may bring out a
desirable tasking mechanism for actual parallel
functional systems,

In order to write deadlock-free programs
which contain synch for synchronization, we
have proposcd a practical method to avoid
dcadlock by building up programs from safe
functions. It is somewhat informal for brevity,
however. More formal treaiment would be wel-
come.

Synchronization by strict functions is
inherent in lazy evaluation and is commonly
observed in programs that deal with numbers. It
may work o some extent for list processing func-
tions as well. We have demonstrated this by a
parallel implementation of the list comprehen-
sion. There is more work to be done before it can
become a higher level notation of parallelism.
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