A4 7 b7 Tk

2E A

%

=

7 O SO
3 xEE

) o Emsr

A

C8-2

Relation between Lambda Hoisting and Fully Lazy Lambda Lifting

Keiichi Kaneko and Masato Takeichi
Faculty of Engineering, the University of Tokyo

Abstract

In this paper, we clarify essential differences of the lambda hoisting (Takeichi[3]) and the fully lazy lambda lifting (Peyton
Jones[4]) algorithms for translating functional programs into fully lazy ones. These algorithms look alike in that both of them
float out local definitions, and extract maximal free occurrences of subexpressions to achieve full laziness. However, such operations
differ slightly depending on their underlying implementation schemes.

We first define a functional language to explain the algorithms and then discuss the differences between the two algorithms.
Finally, we claim that both algorithms are continucus by transforming the lambda hoisting rules into those for fully lazy lambda

lifting.
1 Introduction
For example, let us consider a lambda expression:
Arl{Ay.y a (+ z 1) whererec a =4 z 2)
(K{Az. = z 3 whererec § = + z 3})

where I and K are combinaters. We can transform this expres-
sion using fully lazy lambda lifting into a supercombinator
defined as:

Ur=1® a(+rl) wherereec a = + ¢ 2)
(K(®, 8 whererec # =+ z 3))

using auxiliary supercombinators ®; and ®; defined as:

(1)

b pogy=ypgand Pprz=*zr
On the other hand, if we transform the expression using lambda
hoisting, the following lambda expression is obtained:
Azl dy.y e y)(K(rz. 2 3))
whererec a =+ rz2and f=+z3andy=+z1. (2)

&}

Comparing (1) and (2), we find that a supercombinator corre-

sponds to a lambda expression, respectively. (2) differs from

(1) in two points:

¢ Local definitions are collected into a single whererec-clause.

e A maximal free occurrence of a subexpression is treated as
a local definition.

In the rest of this paper, we investigate the reason why there
are these differences.

2 Preliminaries

2.1 A Simple Functional Language

We introduce a simple functional language to provide a com-
mon means for describing the algorithms. Figure 1 shows asim-
ple specification of our language. The reader may wonder why
where-clauses are missing in it, while whererec-clauses are in-
cluded. In fact, we can implement virtually any local definition
with whererec, but we can not with where. We also assume
that fn-variables and locally defined variables are all distinct,
and no names may crash in the course of transformation. In
summary of our assumption, functional programs written in a
language with more generous features are supposed to be trans-
formed into ones in our language before they are converted into
fully lazy ones.

2.2 Lambda Hoisting

The lambda hoisting algorithm attains full laziness by trans-
forming an expression in our functional language into one of
more restricted form called the fully lazy normal form shown
in Figure 2. In the direct consequence of the context condition,
lazy evaluation of arguments and local definitions brings full
laziness.

In order to hoist free occurrences of expressions, their lexical
levels are caleulated. \We can determine whether each subex-
pression is free or bound in the expression from its lexical level.
Each variable is assigned a level number which corresponds to
the depth of nested fn-abstractions. By definition, every basic

value has level number zero. The level number of an expression
is used to find variables on which every subexpression depends.
Figure 3 shows the assignment rules without details. See Take-
ichi[5] for thermn.

Followings are strict definitions for maximal free occurrences
of combinations.

Definition (Maximum of a Set of Level Numbers) For any
set of level numbers [= {l3,la,..., 1}, maximum of the set is
denoted by |/| = max{h,l,...,I.}.

Definition (Free Occurrences of Combinations) An occurrence
of an expression of the form (eg e1) is called a free occurrence
with respect tow € L and I € N, if 0 < |L[egw!| < 1,0 <
[Lle)Jwl] < 1, and |L[ege;]Jw!] # 0 hold.

Definition (Maximal Free Qccurrences of Combinations) A
free occurrence of a combination e* = (eg ey) with respect to
w € L and I € N is called maximal, if either of the following
conditions holds.

1 There is an occurrence of a combination containing e as
(e’ e*) or (e” €'), and |L[e*]wi| < |L[e'Jwl| holds.
2 The occurrence e* appears as either

fn z:e*,
e* whererec z; = e; and...and z, = e,, or
r»; = e” in a whererec-clause.

Now an expression e is transformed into (e* whererec u*0)
in the fully lazy normal form by the lambda hoisting rules
shown in Figure 4:

(0™ w",e") = Hlelugws.

2.3 Fully Lazy Lambda Lifting

We follow the description of fully lazy lambda lifting in Pey-
ton Joues[d]. However, the algerithm is simplified for brevity
in this paper.

We show how an expression in our functional language is
transformed by fully lazy lambda lifting into declarations of
supercombinators. Full laziness is achieved by floating local
definitions outwards and by abstracting maximal free occur-
rences of expressions using supercombinators. Thus the algo-
rithm breaks into two phases. It floats out the local definitions
as far as possible in the first phase, it detects and abstracts the
maximal free occurrences of expressions in the second phase.

The definitions for maximal free occurrences of expressions
and supercombinators follow:

Definition (Free Occurrences of Expressions) An expression e
is called free with respect tow € Land ! € N,if 0 < |[L[e]w!| < 1
holds.

Definition (Maximal Free Occurrences of Expressions) A free
occurrence of an expression e* with respect tow € Land [€ N
is called maximal, if either of the following conditions holds.

1 There is an occurrence of a combination containing e* as
(¢' e*) or (e" '), and |L[e'Jwl| = I holds.
2 The expression ™ appears as either

for:e*,
*

¢* whererec z; = e; and...and », = e,, or

z; = ¢* in 2 whererec-clause.

Definition (Supercombinators) An expression e which has no
free variable is called a supercombinator, if e is in the form of
fn zyzy... 1, ;€ and ¢’ does not contain any lambda abstrac-
tion which is not a supercombinator.

The algorithm for floating out is as follows:

1 For each local definition, we compute the level number of the
defined variable by computing its definition body. This level
number identifies the innermost fn-abstraction on which the
definition depends.

2 The definition then be floated out until the nearest enclosing
fn-abstraction has this level number.

3 If the definition appears in the funection position of an appli-
cation, it is floated out until it does not.

And identifying maximal free occurrences of expressions is
performed in a single tree walk over the expression:

1 On the way down the tree, the level number of each fn-
variable is recorded.

2 On the way up, the level of each expression is computed,
using the environment and the level of its subexpressions. If

an expression turns ocut to be a maximal free occurrence of

an expression, it is given a new fresh identifier.

3 When an fn-abstraction is encountered on the way up, it is
transformed into a supercombinator, and the fn-abstraction
is replaced by the supercombinator applied to maximal free
occurrences of expressions in it.

3 Differences of the Algorithms

3.1 Local Definitions

Both algorithms allow local definitions in the source lan-
guage which must be floated out as high as possible subject
to the binding scope rule to attain full laziness. The difference
is that after floating out the local definitions, the lambda hoist-
ing method collects local definitions of the same level, while
the fully lazy lambda lifting method leaves them separated.
This difference coriginates from the difference of implementa-
tion schemes. That is, lambda hoisting adopts the environment
mode] for implementation such as the SECD machine. For ex-
ample, we extract the local definitions in an expression

) whererec ¢ = E)...y...)
whererec y = F,
to get the hoisted expression

The environment is updated only once when the expression is
evaluated. In an actual implementation, each local definition 1s
represented by a closure which occupies a little space. 5c even
if the variables z and y are not used in evaluation, unnascessary
memory consumption is very little. In lambda hoisting, we
should collect the local definitions so that we can avoid frequent
update of the environment.

Fully lazy lambda lifting adopts graph reduction model based
on recursive supercombinators. Therefore, if we collect lo-
cal definitions in the following expression after the manner of
lambda hoisting

IFB((..z..

we get the too lifted expression
IE B (e sl fo ol v

.y...) whererec z = E and y = F.

.) whererec ¢ = E)

.} wherereec y = F),

.} wherevec z = E and y = F.

When we evaluate this expression, we must always make two
graphs for £ and F regardless the evaluation result of the ex-
pression B. In fully lazy lambda lifting, therefore, we should
float out local definitions no further than is necessary so that
we can avold constructing unnecessary graphs.

3.2 Maximal Free Occurrences

For full laziness, both algorithms must detect maximal free
occurrences of subexpressions to abstract them. The major
difference is concerning with applying technigue. This also de-
rives from the difference of implementation schemes. Fully lazy
lambda lifting transforms the expression

E =, B o Baies)
{where Ey, E; are all the maximal free occurrences of subex-
pressions in F') into the following expression
(fn I IQ:(...Il...IQ...))E1Ez. (3)
At the final stage, it compiles fn zy zo: (...2y...2y...) into
a supercombinator, say ¥, and whole expression is replaced by
UE Ey.

In lambda hoisting, the result E[z := e] of the reduction of
an application ({(fn r : E) e) is equivalent to the expression
(£ whererec z = e). Hence, we can proceed to transform the
expression (3) into

(...z1...79...) whererec z; = E) and z; = E5.
After this, the maximal free occurrences of subexpressions can
be treated as if they were originally declared in a whererec-
clause.

In case that the maximal free occurrence of subexpression v
in (...v...) is a variable, even if lambda hoisting transforms
(...v...) into

(...2...) whererec £ = v,
when (...z...) is evaluated, the whole environment becomes
whererec z =vand ... and v=FE and

Therefore it is redundant to replace the variable » with a fresh
identifier z. Thus lambda hoisting does not abstract maximal
free occurrences of variables. This is one of the reasons that
the lambda hoisting treats maximal free occurrences of combi-
nations rather than expressions.

4 Transformation

In this chapter, we will construct the fully lazy lambda lifting
rules by transforming the lamhda hoisting rules taking account
of the differences described in the previous chapter. We first
divide the lambda hoisting rules into two sets of rules. The
first is the floating rules shown in Figure 5 which float out
the local definitions as high as possible, and the second, the
abstracting rules shown in Figure 6 which detect the maximal
free oceurrences of combinations and abstract them using local
definitions. Note that criginal rules are equivalent to:

(u",w" ") = Ale’ whereree p'0]pews0
where (', e’} = Fle]ugwg0.

Then we revise each set of rules to match fully lazy lambda
lifting. They are shown in Figure 7 and Figure 8. Fully
lazy lambda lifting floats out local definitions separately for
each constituent of combinations and each body of local defi-
nitions. Therefore, p is not passed as argument. In addition,
new whererec-clauses appear as return values of expression in
Figure 7, because we should not float out the local definitions
further than necessity.

And fully lazy lambda lifting transforms fn-expressions into
supercombinators. Hence we introduce ¢ to accumulate those
definitions. In defining supercombinators, we decide the order
of parameters according to Hughes[2].

Fully lazy lambda lifting abstracts a maximal free occurrence
of a single vatiable. Thus it would occur that several parameters
represent a same variable without checking it. So it behooves
us to eliminate the redundant introduction of parameters.

Finally, we can combine the revised rules for floating and
abstracting operations to make the fully lazy lambda lifting
rules shown in Figure 9 which uses two environments, p and
v, Lo treat the declarations of local definitions and those of the
maximal free occurrences of expressions separately.

— 308 —

5 Conclusions

In this paper, we have shown the followings. Both algorithms
are very similar in the point that their basic operations consist
of the floating out the local definitions and the treatment for
maximal free occurrences of subexpressions. Differences in each
operation derive from the difference of implementation schemes.

In addition, we have shown that we can construct the fully
lazy lambda lifting rules by transforming those for the lambda
hoisting step by step. This means that the transition between
the algorithms are continuous. More generally, we can induce
that so is the transition between the graph reduction model and
the environment model.

There is a pure graph reduction model {Turner[6]). On the
other hand, there is an environment model such as lambda
hoisting. And fully lazy lambda lifting is an intermediate model
of them. Its implementations recently use graphs to represent
local definitions and frames, which can be thought as the en-
vironment, to execute the compiled supercombinators. There-
fore, we should adept the model according to the actual imple-
mentation on the target machine.

References

[1] Augustsson, L. and T. Johnsson: “Pararell Graph Reduction
with the (v, G)-machine,” Proceedings of the 1989 Confer-
ence on Functional Programming Language and Computer
Architecture, pp. 202-213, 1989.

[2] Hughes, R. J. M.. “Super-combinators: A New Implemen-
tation Method for Applicative Languages,” Proceedings of
1982 ACM Symposium on Lisp and Functional Program-
ming, pp. 1-10, 1982.

[3] Johnsson, T.: “Lambda-Lifting: Transformation Programs
to Recursive Equations,” Lecture Notes in Computer Sci-
ence 201, Springer-Verlag, pp. 190-203, 1985.

[4] Peyton Jones, Simon L.: “The Implementation of Functional
Programming Languages,” Prentice-Hall Inernational, 1987.

[3] Takeichi, M.: “Lambda-Hoisting: A Transformation Tech-
nique for Fully Lazy Evaluation of Functional Programs,”
New CGeneration Computing, Veol. 5, pp. 377-391, 1988.

[6] Turner, D. A.: “A New Implementation Technique for Ap-
plicative Languages,”™ Software—Practice and Experience,
No. 9, pp. 31-49, 1979.

Syntactic Domains

b€ Bas basic values
z € Ide identifiers
e € Exp expressions

Abstract Syntar
ex=b|z|ee|fnzr:e|ewhererecz=cand . .andr=e

Figure 1. Specification of Qur Functional Language

Syntaz
ex=¢ |e whererec z=¢ and...and z=¢
gu=b|z|ee |[nz:e

Contert Condition
e contains no free occurrence of compound expressions.

Figure 2 Fully Lazy Normal Form

Level Numbers
{eN
Environment for Level Numbers
weLl =[Ide — N,]
Assignment Rules
L Bxp— L — N —3N

L[blw! = {0}
LlzJwl = {0} U {w[z]}
LlegeyJwl = Lieglwl U L]e)wl
Lifn z: eglwl = Lleg)(w + {2 — 1+ 1)1+ 1) = {{+ 1}
Llec whererec z; = ¢; and ... and z, = e, Jwl = Llegw'!
where ' =w + {2y — L)+ ...+ {z, — 1)
where [; = |L{e;]w’l| fori=1,...,n.

—— 359

Notation
QOperator + stands for the disjoint sum.
For any domain X, X, = X + {err}.
For an environment w, w + {z — [} denotes
Ayif z =y then [else wly].

Initial Environment
For pre-defined identifiers z, wy satisfies wy[z] = 0.

Figure 3 Rules for Assigning Level Numbers

Declarations of Mazimal Free Qccurrences of Combinations
pEM =[N — 2P
d = Dec declarations

g e e

Hoisting Rules
H:Exp—+M—L—N —[MxL x Exp]

H{blpol = {p,w, [b])
Hlehol = {0, [2])
Hlege |l = (u* ", €7)
let {u” w" el =Hle| el
where (', w’, ep) = H [eg]pwd in
if e/ (i=0,1) is an MFOC w.r.t. w” and [4 1,
pr=pl (k= p kU [2' = €]]) 0 =0t (' — k),
and e* =[(z'e})] or e* =[(ehz’)]
for i=0, 1, respectively,
where k=|L[e;]w"l| and 2’ is a fresh identifier
else u* = p" w" =w" and e* = (egel)
Hifn z: epluw! = (1" ,w*, [fn = : eg])
let (', eg) = Hlea](p+ {1+ 1= {}))(w+(z—1+1))(I+1) in
if @'(I+1)={} and eg is an MFOC w.r.t. w and [,
u= 4+ (k= WEUTE = ef]),
w' =w + {2’ — k), and e” = [2/]
where k=|L[ef)w'l|and 'is a fresh identifier
else p*=p' w'=w’, and e"=[e} whererec p'(I+1)]
H[eg whererecr, =¢, and ...and z, = e, pwl= H(ep)pnwnl
where =gl + (k— p'k U [z;=€}]) andw;=w}+ {z; — k)
where {(pf,w!, el = Hle;]pi_1wi—1l and k=|Llefjwil]
fori=1,...,n,and po=p,wpo=w
Notations
Tuples in [M x L x Exp] are written as (p,w, e).
Syntactic elements are quoted by [and].
For a declaration set p, pt + (k — v) denotes
Aj.if j =k then v else uj
If pl={[z1=e1],...,[zn=en]}, [ec whererec ul] denotes
[eo whererec z; =e; and ... and z, = e,]

Initial Set of Declarations
For any | € N, pg satisfies pul = {}.

Figure 4 Lambda Hoisting Rules

Floating Rules
F:Exp—M—L—=N —[MxL x Exp]

Flbjpl = (0, 1)
Flzlpwl = (i@, [2])
Flege;Jpwl = (p* ,w™,e7)
let {p',w' ef) = Fleg]ueel in
let {u",w* e}) = Fle|p'w'l in
e = [(epey)]
Flfo z: egdpwl = (p7,w*, [fn z: e5])
let (= w* ep) = Fleg)(u+(I+1— {H)(w+{z —I+1))(I+1)in
ep = [ef whererec p~ (I + 1)]

Fleowhererec z; =e; and ... and 2, = e, |pw! = Fleg) tatnl
where py=pi+ (k—p'k U [z;=¢l]) and wi=w!+ (z; — k)
where (!, wi, el) = Flep_ w1l and k=|L[e!]wl|

fori=1,...,n,and yo = p, wop = w

Figure 5 Floating Rules for Local Definitions

Abstracting Rules
A:Exp—-M —L —

if ef is an MFOE w.r.t. o' and I + 1,
W =w'H{0—0), ef = [Pey] and o* =o' U{[Pz'z=2']}
N — [M x L x Exp] where @ and z’ are fresh identifiers
Ablpwl = {p,w, [b]) else w” = '+ (2 —0), e = f‘f’fm, < Ehng - €]y e el
Al ol = {ig, [5]) and ¢* =o' U [Py, .. 20q, -+ 2oy - T, T = g
A[eoel]pul =‘(,u" % where @ is a fresh identifier
let. (4w’ ‘fo) = Alegluel in and p'k is ([, = €ly],-o o [Thn, = €hn, 1}
let (" e}) = Aley]'w'l in Alleg wheverec z; = e; and ... and z, = e,]uwlo
if & (i_Dl) is an MFOC wrt. «” and [+1, = (p7wr 90:‘7 i
W= 4 (b gk U [z =€), 0" =0 + (&' — k), let {u*,w
and e —fz:el]ore = [(ef2’

eDn) A [Bﬂ]f‘ﬂunh’-
eg = l'e whmerec ry = ey and .
for i = 0,1, respectively, where {pf,wi, e;, 00} =
where k = |L[e;]u”!] and ' is a fresh identifier for i =1,.
else pu” = p”, w* = w" and &" = [(epel)]
Alfn z:

cand g =&,
s eglpwl = {(p°,w", [fn z:

Alledpiqwi_yloi_y

nand ph =, wh =w, of = 0
el Figure 8 Revised Abstracting Rules for MFOEs
let (' o') = [EOJ(PTU"H—‘{]})(+Hz—=I+1)+1)in Lifting Rules
fP_(H'})"U;[] dm’jLeLOJ;':’anM’}}-)OC“ r.t.ow' and [L' Bxp—-M—~L—=N—=5—[MxMxLxExpx§]
pr=p (k= gk U2 = ep)), ;
w'=w4 (g — k) ande” = [z L'blwwle = {pg, v,w, [b],0)
where k = |L[eg]w'l| and ¢’ is a fresh identifier L’["-‘]"*’(V = (He, ¥, By [z], 'f’)_ :
else p” = p',w* =’ and e” = [e} whererec p/(I +1)] L [Eofl}b’wfﬂ' = .U el o
Bo=, ; o H o . il Ll
Aleg whererec ry = ¢ and ... and z, = e, |pwl= (4", w", €7) ‘(F v Ie_l}.‘f’ } L_‘[Elf]‘“" "{)
let (4*,w*,eh) = Alealtytl w.here {,'u",u ;I..:',eo,a) = L'eg]uwle in
where (u! !, el) = Ale;) !yl pr=pl (W 0= (),
fori=1,...,n and‘yg = pwE = if e/ (i =0,1) is an MFOE w.r.t. w” and [,
i i#m =y H 5 . o LSRN N g ! — f i7]
o e it] e Sy
e 3 e 1 {1 = 1 =
Figure 6 Abstracting Rules for MFOCs or e* = [(on)] for i = 0, 1, respectively
_ else v* ="+ (k ”.LU{[r —e]}) w=w’+{z’ — k),
F’“ﬁ“”y Rules and e* = [(z'(e} whereree pl)}] or e* = [(ep2’)]

F':Exp —L— N — [M x L x Exp] for #=10,1, respeetively,

F’[b]w! (ew, [B]) where b = |L[e,—}w”1| and z’ is a fresh identifier
Fllz)wl = (#é:'-“‘: rz]) else v* =" w* =w" and e* = [(ef(e}] whererec p"l))]
Flleger)wl = {(p7,w", e L 7 ; eg}w!o_ (u°,v°,w",e5,0))
let {u' W' eb) = F'leglw! in let (u', ‘;: w0) =L [BU]Ianng'F g,l' T;_{ & 1))“"‘ 1)0 mn
let (4",10%,e) = F'le o'l in e (110710 5, 07) = Vel alo" n "= 44

pr = (" +{1—={})) and " = [(ef (e} whereree p'l))] wiere
Flfn z: eglwi:(p W [fn oz eg]) . 11'99’15 an -P:.'IFOE w.r.t. w' andf-i—l,
let (", ef) = [ea](f:u +{z— I+ 1) +1)in e U@U—E%}w = a[q} o)l
G i estine a1 1) =% et else ¢ ‘”—w_'+(tb—-.0) eg = [(Pes et A |
F[e:;whererecrl:el and...and-_r:n:rz,,]u;!:(p Wt eg e } + €y o e e
let (pg,w”) Filenlwh, and o =o' U {[®zf; .- . @hay - - L)y« v T
where (,u“ Lely=#r [e Jt_ lL = ey whereree p/'(1 +1)]}
fori=1,...,n and w) = w, ki = |Les}wl]| where ® is a fresh identifier
b e il N o i B and vk is {[zf; =elq]. . [2hn, = €in, 1}
e ok POJF,-:Zl(y'-I-(L' =s{ae= [whareree pik]}) L'eg whereree £y =¢e; and ... andﬁ r, = e, lvwlo
; :(P.tV.xw‘JEBJU‘
Netiian let {pf,v" w", e5,07) = L'[eq]y,w),loy, in
For any environments py and pa, juy+pto denotes Al (p1 U pal). L % nn
Figure T Revised Floating Rules for Local Definitions B =ppt 5_‘1{‘“:‘ + (ki — {[zi = ¢f whererec pik]}})
: = where (;11, jEhalii= B [el] vi_ 11..,,' kot
Declaration of Supercombinators fori=1,.
€S
s=5
Fi=dr.. . B=¢8

1 and,um_;; wh=w, ol =0, k;=|L[ewl|

hgure 9 Fully Lagy Lambda Lifting Rules
Abstracting Rules

A Exp—M—L—~N—5—[MxLxExpx §]
’[]P"‘)la = ('H oy '\bj Uf
Alehualo = (i, 21,
[(’af’llj.l...JIU — (;.c'.u'.e‘.c;
let (u', o' .*’c: o'y = A'leg]pwlo in
lat (p” w? eh, o) = Alle;]plu'le’ in
ifel (i=0,1) is an '\IFOE w.r.t. w” and [,
if there exists k such that [¢'=¢€/] € p”L
pr=pt =0 and e =[(z'e])] or e” =[{epz')]
for i = 0,1, respectively,
else pr=p" L (k—p'k U [z =el]), 0" =w +{z' — k),
and e” = [(I’F‘lﬂ op " = [(eurﬂ
for i = 0, 1, respectively,

where k = |L{e}Jw"l| and z' is a fresh identifier
else p” = p", w” =w" and e* = [(ege})]
A'lfn £ eqluwlo = A'leglpwlo”
let (u',w' e, 0’y = A'leg]{}Hw + (z = L+ 1))/ + 1)oin

— A=

