BEZZ P72 Tﬂ?%

Mk

D8-2

Promotion Strategies for Parallelizing

Tree Algorithms

M Ry’

Zhenjiang HU

Hig ST
Hideya IWASAKI

& EAT
Masato TAKEICHI

TR RE THH
Faculty of Engineering, University of Tokyo
HERAY HEHGRRE Y ¥ —
Educational Computer Centre, University of Tokyo

BnE

This paper is concerned with deriving parallel programs for tree algorithms which are

described in terms of two higher order operators: upwards accumulation and downwards accu-

mulation. These two operators are essentially for propagating information around a tree, and

form the basis of many tree algorithms. However, they suffer from un-manipulability to de-

rive parallel programs. To remedy this, we formulate tree accumulations with catamorphisms.

As a result, the promotion strategies, which are general to catamorphisms, become also gen-

eral to accumulations and play an important role in deriving parallel programs for these tree

algorithms.

1 Introduction

The value of programming calculi for the devel-
opment of correct programs is now clear to the
computer science community. Their value is even
greater for parallel programming than for sequen-
tial programming, due to the greater complex-
ity of parallel computations. One of such cal-
culus is the Bird-Meertens formalism (BMF for
short) [1], which relies on the algebraic properties
on data structures to provide a body of program
transformation rules. Its emphasis on the proper-
ties of data leads to a data parallel programming
style, which appears to be a promising vehicle
for architecture-independent parallel computation
[4].

This paper is concerned with deriving parallel
programs for tree algorithms which are deseribed
in terms of two higher order operators: upwards

421

accumulation together with its counterpart down-
wards accumulation. These two kinds of opera-
tors are essentially functions which propagate in-
formation around a tree, and form the basis of
many tree algorithms such as prefix sum algo-
rithm, attribute grammar. However, they suf-
fer from un-manipulability to derive parallel pro-
grams. To remedy this, we formulate tree accu-
mulations with ecatamorphisms (homomorphisms
on initial data types) according to the techniques
in [2] [3]. As a result, the promotion strategies,
which are general to catamorphisms, become also
general to accumulations and significant in deriv-
ing parallel programs for these tree algorithms.
The remainder of this paper is organized as fol-
lows. First, we introduce briefly two important
concepts, namely catamorphism and promotion.

Then we demonstrate how to formulate tree ac-




cumulations with catamorphisms. Finally, an ex-
ample of the derivation of a parallel program for
Prefiz Sum Problem is described to illustrate our
method.

2 Catamorphisms and Promotion

It is well known that data types are constructed
as the least solution of recursive type equations.
For example, the type of non-empty binary tree
with elements of type a is defined by the following
equation.

Tree a = Leaf a | Node a (Tree a) {(Tree a).
To capture both data structure and control struc-
ture, types in BMF are modeled by type functors
1! with type constructors. For example, the above
tree type is redefined by functor F = F} + F, with

constructor 7 = 71 4+ 1 where i2

F for objects: FiFX=a FX=axXxX
F for functions: F, f=id F f=idx fxf
C 7 = Leaf T = Node

Catamorphisms form an important class of
functions over a given data type. They are the
functions that promaote through the type construc-
tors. The function cata is a tree catamorphism if

there exist two operators ¢; and ¢o such that

cata (Leaf a) = ¢ a
cata (Node a l 1) = ¢ a (cata [)(cata 7)

A consequence of the definition of a type as the
least solution of type equations is the unique ex-
istence of the catamorphism eata if two operators
¢ and ¢ are determined. Therefore, we shall use
special braces to denote this catamorphism as

cata = (&), P2 .
An example of a tree catamorphism is the function
hx, which applies h to every element of a tree:
hx = (Leaf.h, AbAudv.Node (hb) u v]).
In the world of catamorphisms, the promotion
rule is a general mechanism to manipulate cata-
morphisms, which tells us that the composition of

a function with a catamorphism is again a cata-

11 A type functor is a function from types to types that
has a corresponding action on functions which respects
identity and composition.

12 Here, id stands for the identity function, x for prod-
uct and + for sum.

morphism under some conditions as stated in the
following theorem.

Theorem 1 (Promotion)
h-‘i’i:‘l,’),'F,h (_i:l.---.n)
A1, 0n) = (Y1, 4]

A Higher order catumorphism (HOC for short)

is a catamorphism whose result of its application
is still a function. For HOC, we have the following
corollary obtained directly from the above theo-
rem [3].
Corollary 2 (Higher Order Promotion)
(h.). i =0; . Fy(h:) (i =1,---n)
(h.). 081, da) = (@1, %))

Promotion Theorem makes catamorphisms ma-

nipulable for various purposes. For the derivation
of parallel programs of tree algorithms, it helps
us to obtain a tree catamorphism with efficient
operators. It should be noted that a tree cata-
morphism, say (¢, ¢a]), may be parallelly imple-
mented in the time proportional to the product
of the height of the tree and the maximal time
costed by operators ¢, and ¢o 3. So our goal is

to find a catamorphism with low cost operators.

3 Tree Accumulations

3.1 Upwards accumulation
Upwards aceumulation passes information up
through the tree, from leaves towards the root;
each element is replaced by some function of its
descendents in an accumulational manner. To
be precise, upwards accumulations, denoted as
(f,g)1 :: Tree a — Tree b depending on func-
tions f =
defined by
(fi9)" (Leaf a) = Leaf ([ a)
(f,9)" (Node a lT)
=Nade (ga (vI') (v 1
where I' = (f,g)" 1, ' =(f,9)" r

a —b and g:ia —=b—=5b— b are

where function «y :: Tree a — @ is to return the

$3 One implementation is to assign each node with a
processor and all processors are connected in a tree

architecture.

422



nodes of the left subtree.

sl (Node blr)
sl (Leaf a)
st (Leaf a)
st (Node bl )

o
4

a
b (st )@ (str)

The function cpp :: Tree a — Tree a, correspond-
ing to Step 2, uses ¢p :: Path a — a to accumulate
values along the path for each node and makes the
node contain the sum of the leaves in its left.
cp (X a:ps)=cp ps (1,a)
where

ep’ ([]) L) =7

ep' (La:ps) (I,r)=cp' ps (I,I%a)

e (Ra:ps) (Lr) = cp' ps (r,r  a)
So much for the initial specification, which is in-
efficient and whose parallelism is implicited.

Now we are going to derive an efficient catamor-
phism.

First, we reexpress all accumulations occurred
in pps as catamorphisms. In pps, there are two
accumulations: subtrees and paths. According
to Lemma 3 and 4, their corresponding catamor-
phisms are as follows.

subtrees = ((Leaf.Leaf, h])
where halr = Node (Node a (v 1) (v 7)) Ir
paths t = (I, n]) t (Aa.[X 4])
where
lap=Leaf(pa)
nbuvp=Node (ph) (ulre(pb)+[L ¢]))
(v(rc.(p B) ++[R o))

Next we manipulate pps according to Promo-
tion Theorem. We begin with promoting slfx
into subtrees. Since slt is a nested definition
(i.e. it uses recursive function st in its defini-
tion) which makes later transformation difficult,
tupling technigue is used to flatten it.
that tmp = = (sit z, st z), it follows that

Assume
sl =m.tmp where m (z,9)=2z
Calculating tmp, we can obtain

tmp = ([Aa.(a,a), tnd)
where tnd b (I, 12) (r1,7r2) = (lo, @z Drs).

Now we promote tmp* into subtrees to make

- 424

tmp * .subtrees be a catamorphisms. Since

tmp* (Leaf(Leaf a))
{ def of x }
Leaf(tmp(Leaf a))
{ def of tmp }
Leaf(a,a)

Il

and
tmp*(h buv)

s { def. of h and x }
Node(la,b @ 1y @ r2)(tmp * u)(tmp * v)
where (Iy,l2) = tmp (v u)
(r1,72) =tmp (v v)
= { since y.tmp* = tmp.y }
Node(ly, b @ 1y & rg)(tmp = u)(tmp * v)
where (Iy,13) = v (tmp * u)
(r1,r2) = 7 (tmp % v)
{ defineg }
g b (tmp*u)(tmp * v)
we know from the promotion theorem that
st =m =. (Aa.Leaf(a,a),g]
which is an efficient parallel program for slt.

What is left is to parallelize cpp. The method is
similar with that done for sit, where cp* is tried to be
promoted into paths based on Higher Order Promotion
Corollary. The final result for cpp is shown below.

epp t = ((L,n]} t (Az.e,id)
where
La p=Leaf (m; (p a))
nbuwvp=Noder'
(v (Ac.(V, U'@e)) (v(Ae(r', T D))
where (I',r')=pb

Finally, by using derived cpp and slt in pps, we have
obtained our final efficient parallel program.

£E |

[1] Roland Backhouse. An exploration of the bird-
meertens formalism. In STOP Summer School on Con-
structive Algorithmics, Abeland, 3 1989.

[2] I. Gibbons. Upwards and downwards accumulations
on trees. In Mathematics of Program Construction
(LNCS 669), pages 122 138, Springer-Verlag, 1992.

[3] Z. Hu, H. Iwasaki, and M. Takeichi. Catamorphism-
based transformation of functional programs. 94-PRG-
16, IPST SIG Note, March 1994.

[4] D.B. Skillicorn. Architecture-independent parallel
computation. [EEE Computer, 23(12):38-51, Decem-
ber 1990,




root of a tree, as defined by
¥ = {{id, da. Al.Ar.a)) .
An example of upwards accumulation is the func-
tion subtrees :: Tree a — Tree (Tree a) which
replaces each node with the subtree rooted at it:
subtrees = (Leaf, Node)T,
As argued in Introduction, we hope to formulate
(f,g)" as a catamorphism to make it manipula-
ble. Lemma 3, which can be easily proved from

the definitions, is for this purpose.

Lemma 3 (upwards accumulation)

(f,g)" = ([ Leaf.f, h])
where h ol v = Node (ga (y1) (yr)) I

3.2 Downwards accumulation

Symunetrically, downwards accumulation passes
information downwards, from the root towards
the leaves; each element is replaced by some func-

tions on ancestors. Downwards accumulations,

denoted as (f,®, ®)¥ :: Tree a — Tree b, depends
on three operations f 1o — b, (&) b —a — b
and (®) :: b — a — b. They are defined by

(f,@, @) (Leaf a) = Leaf (f a)
(fy@, @) (Node a x y)
= Node (f a) ((((f a)&),®, ®)¢ z)
(((f a)@), T, @) v).

One simple downwards accumulation is (id, 4, 4 )%
which replaces each node with the sum of all its
ancestors.

To make readers be familiar with downwards ac-
curnulations and also serve for later discussion, we
discuss another downwards accumulation paths:
which replaces each node with its path. The path
of a node in the tree is defined as a list of tagged
elements going from the root to itself. The tags
may be “X” (denoting the root), “L" (denoting
the left node) or “R” (denoting the right node).
For instance, [X 1, 1t 3. L 4] represents a path that
starts from the root which has element of 1 and
then goes to its right branch and meets the node
with element of 3 and next goes to the left branch
and meet the node with element of 4. Formally,
paths :: Tree a — Tree (Path a) is defined by

(Aa.[X a], Az Ag.x ++ (L gl Az Ay.a ++ [R o)V

Formulating downwards accumulations as cata-
morphisms is not so easy as doing for upwards ac-
cumulations. Gibbons (2] claimed that only under
some conditions could downwards accumulation
be expressed as a catamorphism. However, HOC
can solve the problem well without Gibbons’ re-
strictions (3], as shown in Lemma 4.

Lemma 4 (downwards accumulation)
(f@,@)t=_In) ¢t f
where
lap=Leaf(pa)
nbuvp=>Node (pb) (u((ph)&))
(v((p b)@))

4 Parallel Prefix Sum

We shall show how to derive an efficient tree
catamorphism for the prefiz sum problem, since a
tree catamorphism can be parallelly implemented
as argued in Section 2.

The prefix sum problem consists of evaluating
all the running totals of a list. Tt has many appli-
cations in the evaluation of polynomials, compiler
design and numerous graph problems. To focus
on tree transformation, we assume that elements
of the list have been distributed over the leaves of
a balanced binary tree. To be precise, the prob-
lem is: Given a balanced tree with n leaves having
a from left to right and inner-
a, find a parallel algo-
« B

Here (&) :: @ — a — a is associative and ¢ is its

value a1, -,y
nodes having value of ¢ i

rithm to replace each leaf a; with a; @ -+

identity unit,
One of well-known acenmulational algorithms is
made up of two steps: Step 1: Replace each node
in the tree with the sum of the leaves in its left
branch; Step 2: Obtain prefix sum for each leaf by
accumulating its ancestors. In detail, the initial
specification, namely, pps ©: Tree a — Tree b for
the problem is as follows.
pps = cpp.sit
where  slt = sl .

epp = cp * . paths

subtrees

where slt :: Tree a — Tree a corresponds to Step

1, in which sl :: Tree a — a is to compute sum of

423



