Formal Derivation of Efficient Parallel Programs
by Construction of List Homomorphisms

ZHENJIANG HU

Department of Information Engineering, University of Tokyo

and

HIDEYA IWASAKI

Department of Computer Science, Tokyo University of Agriculture and Technology
and

MASATO TAKECHI

Department of Information Engineering, University of Tokyo

It has been attracting much attention to make use of list homomorphisms in parallel programming
because they ideally suit the divide-and-conquer parallel paradigm. However, they have been
usually treated rather informally and ad-hoc in the development of efficient parallel programs.
What is worse is that some interesting functions, e.g., the maximum segment sum problem, are
basically not list homomorphisms. In this paper, we propose a systematic and formal way for
the construction of a list homomorphism for a given problem so that an efficient parallel program
is derived. We show, with several well-known but non-trivial problems, how a straightforward,
and “obviously” correct, but quite ineflicient solution to the problem can be successfully turned
into a semantically equivalent “almost list homomorphism”. The derivation is based on two
transformations, namely tupling and fusion, which are defined according to the specific recursive
structures of list homomorphisms.

Categories and Subject Descriptors: 1.2.2 [Artificial Intelligence|: Automatic Programming

Program transformation; D.1.1 [Programming Techniques]: Applicative (Functional) Pro-
gramming; D.1.3 [Programming Techniques]: Concurrent Programming— Parallel Program-
ming; F.3.3 [Logics and Means of Programs]: Studies of Program Constructs—Program and

recursion schemes

General terms: Program Transformation, Parallel Programming

Additional Key Words and Phrases: List homomorphism, Program transformation and derivation,
Parallel functional programming

1. INTRODUCTION

It has been attracting wide attention to make use of list homomorphisms in parallel
programming [Bird 1987; Cole 1993b; Gorlatch 1995; Gorlatch 1996a; Hu et al.
1996a; Hu et al. 1996¢; Chin 1996]. List homomorphisms [Bird 1987] are those
functions on finite lists that promote through list concatenation — that is, function
h for which there exists an associative binary operator & such that, for all finite lists
zs and ys, we have h (zs +ys) = hzs @ hys, where H+ denotes list concatenation.
Intuitively, the definition of list homomorphisms means that the value of i on the
larger list depends in a particular way (using binary operation @) on the values
of L applied to the two pieces of the list. The computations of hzs and hys

Author’s address: Zhenjiang HU, Department of Information Engineering, University of Tokyo.
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan. Email: hu@ipl.t.u-tokyo.ac.jp

2 . Z. Hu, H. lwasaki and M. Takeichi

are independent each other and can thus be carried out in parallel. This simple
equation can be viewed as expressing the well-known divide-and-conquer paradigm
in parallel programming.

Therefore, the implications for parallel program development become clear; if the
problem is a list homomorphism, then it only remains to define a cheap & in order to
produce a highly parallel solution. However, there are a lot of useful and interesting
list functions that are not list homomorphisms and thus have no corresponding @.
Oune example is the function mss known as (I-dimensional) mazimum segment
sum problem, which finds the maximum of the sums of contiguous segments within
a list of integers. For example, mss [3,—4,2,—1,6,—3] = 7, where the result is
contributed by the segment [2,—1,6]. The mss is not a list homomorphism, since
knowing mss zs and mss ys is not enough to allow computation of mss (ws H- ys).

To solve this problem, Cole [Cole 1993b] proposed an informal approach showing
how to embed these functions into list homomorphisms. His method consists of
constructing a homomorphism as a tuple of functions where the original function
is one of the components. The main difficulties are to guess which functions must
be included in a tuple in addition to the original function and to prove that the
constructed tuple is indeed a list homomorphism. The examples given by Cole show
that this usually requires a lot of ingenuity from the programmer.

The purpose of this paper is to give a systematic and formal derivation of such
list homomorphisms containing the original non-homomorphic function as its com-
ponent. It is mainly based on our previous works reported in [Hu et al. 1996a; Hu
et al. 1996¢]. Our main contributions are as follows.

—Unlike Cole’s informal study, we propose a systematic way of discovering extra
functions which are to be tupled with the original function to form a list homo-
morphism. We base our method on two main theorems, the Tupling Theorem and
the Almost Fusion Theorem, showing how to derive a true list homomorphism
from recursively defined functions by means of tupling and how to calculate a
new homomorphism ncrementally from the old by means of fusion. It would be
interesting to see that our systematic construction of list homomorphisms is of
much help in discovering new efficient parallel programs (Section 5).

—Our main theorems for tupling and fusion are given in a calculational style [Mei-
jer et al. 1991; Takano and Meijer 1995; Hu et al. 1996b] rather than being based
on the fold/unfold transformation [Chin 1992; Chin 1993]. Therefore, infinite
unfoldings, once inherited in the fold/unfold transformation, can be definitely
avoided by the theorems themselves. Furthermore, although we restrict ourselves
to list homomorphisms, our theorems could be extended naturally for homomor-
phisms of arbitrary data structures (e.g., trees) with the theory of constructive
algorithmics [Fokkinga 1992].

—Our derivation of parallel program proceeds in a formal way, leading to a cor-
rect solution with respect to the initial specification. We start with a simple,
and “obviously” correct, but possibly inefficient solution to the problem, and
then transform it based on our rules and algebraic identities into a semantically
equivalent list homomorphism. Furthermore, as will be seen later, most of our
derivation are mechanical and thus could be made automatically and embedded
in a parallel compiler.

We shall illustrate our idea using the maximum segment sum problem mss as our

Formal Derivation of Efficient Parallel Programs ... : 3

running example. This problem is of interest because there are efficient but non-
obvious algorithms to compute it, both in sequential [Bird 1987] and in parallel[Cai
and Skillicorn 1992; Cole 1993b].

This paper is organized as follows. In Section 2, we review the notational con-
ventions and some basic concepts used in this paper. After showing how to specify
problems in Section 3, we focus ourselves on deriving an efficient (almost) list ho-
momorphism from the specification by using our two important theorems, namely
the Tupling and the Almost Fusion Theorems in Section 4. In Section 5, we illus-
trate how our systematic way is also very useful in discovering new efficient parallel
programs. Concluding remarks are given in Section 6.

2. PRELIMINARY

In this section, we briefly review the notational conventions known as Bird-Meertens
Formalisms [Bird 1987] and some basic concepts which will be used in the rest of
this paper.

Functions

Functional application is denoted by a space and the argument which may be
written without brackets. Thus f @ means f (a). Functions are curried and appli-
cation associates to the left. Thus fab means (fa)b. Functional application is
regarded as more binding than any other operator, so fa & b means (f a) & b but
not f (@ & b). Functional composition is denoted by a centralized circle o. By def-
inition, (f o g)a = f (g a). Functional composition is an associative operator, and
the identity function is denoted by #d. Infix binary operators will often be denoted
by @&,® and can be sectioned; an infix binary operators like ¢ can be turned into
unary functions by: (a&)b=a® b= (&0)a.
The followings are some important operators (functions) used in the paper.

The projection function w; will be used to select the i-th component of tuples,
e.g., m (a,b) = a. The & and x are two important operators related to tuples,

defined by
(f2g)a=(fa.ga), (fxg)(a,b)=(fa, gb).

The 2 can be naturally extended to functions with two arguments. So, we have
a(@2@)b=(a@b, a®b).

The cross operator X, which crosswisely combines elements in two lists with
operator @, is defined informally by:

[m17"'7'77n] ‘)L)EB [y17"'7ym] = [-7,71 ®y17"'7~7~"1 @ymy ity Iy @y17"'7'77n %ym]-
The cross operator enjoys many algebraic identities, e.g., (f*) o Xp = Ao,

—The concat, a function to flatten a list, is defined by:
concat [481, -, 18, = 81 H -+ H 28,

—The zip-with operator Yg, a function to apply & pairwisely to two lists, is infor-
mally defined by

[171, o ",*In] Té}; [yl7 e vyn] = [Il @ Y,' " Tn D ?/n]

4 . Z. Hu, H. lwasaki and M. Takeichi

Lists

Lists are finite sequences of values of the same type. A list is either empty, a
singleton, or the concatenation of two other lists. We write [] for the empty list, [a]
for the singleton list with element a (and [-] for the function taking a to [a]), and
zs ++ ys for the concatenation of zs and ys. Concatenation is associative, and [] is
its unit. For example, the term [1] ++ [2] ++[3] denotes a list with three elements,
often abbreviated to [1, 2, 3].

List Homomorphisms

A function h satisfying the following three equations will be called a list homomor-
phism.

h [] = LfD
h] = fz
h (zs ++ys) = has @ hys

It soon follows from this definition that & must be an associative binary operator
with unit ¢s. For notational convenience, we write ((f,&])! for the unique function
h, e.g., sum = ([id,+]) and max = (id,T]), where T denotes the binary maximum
function whose unit is —oo. Note when it is clear from the context, we usually
abbreviate “list homomorphisms” to “homomorphism.”

Two important list homomorphisms are map and reduction. Map is the operator
which applies a function to every item in a list. It is written as an infix *. Informally,
we have

f*['rlv'r%"'emn] = [fmlvfm%"'vfmn]-

Reduction is the operator which collapses a list into a single value by repeated
application of some binary operator. It is written as an infix /. Informally, for an
associative binary operator @, we have

Df [T, 22, Ty =Ty DEy e+ D Ty

It is not difficult to see that * and / have simple massively parallel implementations
on many architectures. For example, &/ can be computed in parallel on a tree-like
structure with the combining operator & applied in the nodes, whereas fx is totally
parallel. The relevance of list homomorphisms to parallel programming can be seen
clearly from the Homomorphism Lemma [Bird 1987]: (f, @) = (®/) o (fx*), saying
that every list homomorphism can be written as the composition of a reduction and
a map. This implies that a list homomorphism (f, ®]) can be simply implemented
using O(logn) x C(4) + C(f) parallel time where n stands for the size of input list,
C(®) for the cost of @, and C(f) for the cost of f.

Almost Homomorphisms

Simple as they are, list homomorphisms cannot specify a lot of interesting func-
tions as explained in Introduction. To solve this problem, Cole [Cole 1993b] argued
informally that some of them can be couverted into so-called almost (list) homo-
morphisms by tupling them with some extra functions so that the tupled function

IStrictly speaking, we should write ((ig, f, B]) to denote the unique function h. We can omit the
tg because it is the unit of @.

Formal Derivation of Efficient Parallel Programs ... : 5

can be specified by a list homomorphism. In other words, an almost homomor-
phism is a composition of a projection function and a list homomorphism. Since
projection functions are simple, almost homomorphisms are also suitable for parallel
implementation as list homomorphisms do.

In fact, it may be surprising to see that every function can be represented in
terms of an almost homomorphism [Gorlatch 1995]. Let k be a non-homomorphic
function. Consider a new function ¢ such that g = (z, k). The tupled function
¢ is homomorphic, i.e., g (ws +Hys) = (s +ys, k(s +ys)) = gas & gys, where
(xs1, k1)@ (ws2, ko) = (ws1 H xsa, k (z51 H x52)), and we have the following almost
homomorphism for k:

k=myog=mo(go[], D).

Py

However, a closer look at the definition of operation & reveals the drawback: it
is quite expensive and meaningless in that it does not make use of the previously
computed values ky (= k xs;) and ky (= k 255) and computes k from scratch! In
this sense, we say it is not an expected “true” almost homomorphism.

In order to derive a “true” almost homomorphism, a suitable tupled function
should be carefully defined, making full use of previously computed values. Cole
reported several case studies of such derivation with parallel algorithms as a re-
sult, and stressed that in each case the derivation requires a lot of intuition [Cole
1993b; Cole 1993a]. In this paper, we shall propose a systematic approach to this
derivation.

3. SPECIFICATION

Given problems, we aim at a formal derivation of efficient parallel programs by con-
structing list homomorphisms including the original as its component (i.c., almost
homomorphisms)?. To talk about parallel program derivation, we should be clear
about specifications. It is advocated by transformational programming [Bird 1984;
Feather 1987; Pettorossi and Proietti 1993] that specifications should be given as
naive solutions to problems where we only focus ourselves on a simple but correct
solutions without concerning with efficiency or parallelism. More precisely, our
specification for a problem p will be a simple, and “obviously” correct, but possibly
inefficient solution with the form in a compositional style:

P=pno---0py0p; (1)

where each p; is a (recursively defined) function. This reflects our way of solving
problems; a (big) problem p may be solved through multiple passes while in each
pass a simpler problem p; is solved by a recursion.

Consider our running example of maximum segment sum problem. An obviously
correct solution to the problem is mss : [Int] — Int defined by:

mss = mawx o (sumsx) o seqs

which is implemented by three passes; (1) computing all contiguous segments of a
sequence by segs, (2) summing up each contiguous segment by sum, (3) selecting
the largest value by max.

2Note that list homomorphisms can be considered as a special case of almost list homomorphisms
where the projection part is identity function.

6 . Z. Hu, H. Ilwasaki and M. Takeichi

mss : [(Index, Int)] — Int
mss = maz’ o (sum'x) o segs
where
maa’ = (a2, 1)
where (is,z) 1" (js,y))-z Ty
sum’ = (MG, 2).([7], z), +))
where (is,z) +' (js,y) = (is +Hjs, v + y)
seqs] ~ 1
segs [7] = [[«]]
segs (ws ++ys) = segs s +< segs ys +H (tails zs Xy inits ys)
inits [] =[]
inits [x] = [[«]]
inits (s Hys) = inits xs + (xs +H) * (inits ys)
tails [] =]
tails [z] = [[z]]
tails (zs Hys) = (++ ys) * (tasls xs) ++ tails ys

Fig. 1. Specification for mss Problem

The only unknown function in the specification is segs : [Int] — [[Int]], computing
all segments of a list. It would be likely to define it simply as

segs (ws ++ys) = segs xs +H segs ys + (tails xs Xy inits ys).

The equation reads that all segments in the sequence zs 4+ ys are made up of
three parts: all segments in zs, all segments in ys, and all segments produced by
crosswisely concatenating every tail segment of zs (i.e., the segment in zs ending
with zs’s last element) with every indtial segment of ys (i.e., the segment in ys
starting with ys’s first element). Here, inits and tails are standard functions in
[Bird 1987], though our definitions are slightly different as will be seen later. Being
simple, it is a wrong definition for segs, as you may have noticed that, for example,
segs ([1,2] ++1[3]) # segs ([1] ++[2,3]) while they are expected to be equal (to
segs [1,2,3]). A closer look reveals that the two resulting lists indeed consist of all
segments of [1,2,3] but in different order. One way to remedy this situation is to
force segs to give result of a sorted list of segments under a total order, say <, and
thus we can define segs correctly as

segs (ws +Hys) = segs xs +H< segs ys +H< (tails xs Xy inits ys)

where +H_ merges two sorted lists into one with respect to the order of <.

Let’s see how we can define such < in a simple way. Let [x;,,2; 41,---,2;] and
[@iy. @iyg1, -+, 2, be two segments of the presumed list [¢1,---,4,]. Then, < is
defined by [@;,, 25, 41, @5,] < [Tiys Tigrrs o T jy] =aer [i1, 5 J1] <o iz, 2],
where <p stands for the lexicographic order on indices. To capture the index
information in our specification, we extend the input type of mss and segs from
lists of integers, [Int], to lists of pairs of index and integer, [(Index, Int)]. Also,
we change max to maxz’ and sum’ to sum taking account of this additional index

Formal Derivation of Efficient Parallel Programs 7

information.

So much for the specification of the mss problem, which is summarized in Fig. 1.
It is a naive solution of the problem without concerning efficiency and parallelisim
at all, but its correctness is obvious.

4. DERIVATION

Our derivation of a “true” almost homomorphism from the specification (1) in a
compositional style is carried out ncrementally by the following procedure.

Step 1. Derive an almost homomorphism from the recursive definition
of p; (Section 4.1);

Step 2. Fuse py into the derived almost homomorphism to obtain a new
almost homomorphism for py o p; and repeat this derivation until
Pn 1s fused (Section 4.2);

Step 3. Let m; o ((f, ®]) be the resulting almost list homomorphism for
Pr © -+ 0 py 0 p1 obtained at Step 2. For the functions inside the
homomorphism, namely f and @, try to repeat Step 1 and 2 to find
efficient parallel implementations for them.

We are confronted with two problems here: (a) How an almost homomorphism
can be derived from a recursive definition? (b) How a new almost homomorphism
can be calculated out of a composition of a function and an old one?

4.1 Deriving almost homomorphisms

Although some functions cannot he described directly by list homomorphisms, they
may be easily described by (mutual) recursive definitions while some other func-
tions might be used (see segs in Section 3 for an example) [Fokkinga 1992]. In
this section, we propose a way of deriving almost homomorphisms from such (mu-
tual) recursive definitions, systematically discovering extra functions that should
be tupled with the original function to turn it into a “true” list homomorphism.
The “true” list homomorphism must fully reuse the previously computed values
in the sense that there are no redundant recursive calls to the original function
or to any newly-discovered extra function, as discussed in Section 2. Our ap-
proach is based on the following theorem. For notational convenience, we define

Alfi=fiafae o2 fo
THEOREM 1. (TUPLING) Let hq,---, hy be mutual-recursively defined by:

hi [l = o,
hi] = fix (2)
hi (zs +Hys) = ((Alh;) ws) &; ((ATh;) ys)
Then A7h; is a list homomorphism (AT f;, ATé;]) and (e, , -« -, ¢,) is the unit of
AT@;.
PrOOF. According to the definition of list homomorphisms, it is sufficient to
prove that

(‘Ailhf) [] = (//$‘17"'7I’€Bn)
(ATh;) [«] = (AT fi)a
(AThi) (zs ++ys) = ((AThi)zs) (A7) ((AThi)ys).

8 . Z. Hu, H. Ilwasaki and M. Takeichi

The first two equations are trivial. The last can be proved by the following calcu-
lation.

LHS

= { Def. of Aand 2 }

(hi(zs Hys), -+, hyp(ws + ys))
{ Def. of h; }

(((AThi)ws) &1 ((AThi) ys), -+, ((AThi) ws) Sn ((AThi) ys))
{ Def. of 2 and A }

RHS

O

Theorem 1 says that if Ay is mutually defined with other functious (i.e., ha, - - hy,)
which traverse over the same lists in the specific form of (2), then tupling hy, .-, hy
will definitely give a list homomorphism. It follows that every h; is an almost
homomorphism. Particularly, h; can be represented in the way of the projection
function m; composed with the list homomorphism for the tupled function. It is
worth noting that this style of tupling can avoid repeatedly redundant computations
of by, -+, h, in the computation of the list homomorphism of A7h; [Takeichi 1987].
That is, all previous computed results by hq,---, h,, can be fully reused, as expected
in “true” almost homomorphisms.

Practically, not all recursive definitions are in the form of (2). They, however,
can be turned into such form by a simple transformation. Let’s demonstrate how
the tupling theorem works in deriving a “true” almost homomorphism from the
definition of segs given in Section 3.

First, we determine what functions are to be tupled, i.e., finding hq,---, hy,. As
explained above, the functions to be tupled are those which traverse over the same
lists in the definitions. So, from the definition of segs:

segs (ws ++ys) = seqs s+ seqs ys + (tails xs Xy inits ys)

we know that segs needs to be tupled with tails and inits, because segs and inits
traverse the same list s whereas segs and tails traverse the same list ys as under-
lined. Going to the definition of inits,

inits (zs Hys) = inits xs H (zs H) * (inits ys)

we find that the inits needs to be tupled with id, the identity function, since
xzs = id zs. Similarly, The tails needs to be tupled with id. Note that ¢d is the
identity function over lists defined by

id (] -0
id [x] = [«]
id (zs Hys) = id zs ++1id ys

To summarize the above, the functions to be tupled are segs, inits, tails, and 2d,
i.e., our tuple function will be segs & inits & tails ~ id.

Next, we rewrite the definitions of the functions in the above tuple to the form
of (2), i.e., deriving f1, Dy for segs, fa, Do for inits, f3, D3 for tails, and fi, Dy for
id. In fact, this is straightforward: just selecting the corresponding recursive calls

Formal Derivation of Efficient Parallel Programs ... : 9

from the tuples. From the definition of segs, we have
e = [i«]
(Sl,ll, tl, dl) 1 (52,[2,t2, (12) = 51 -H-< 59 -H-< (tl(jt)_H_ 12).

It would be helpful for understanding the above derivation if we notice the following
correspondences: s1 to segs xs, i1 to inits zs, t1 to tails zs, di to @d xs, sy to segs ys,
19 to wnits ys, ty to tails ys, dy to ud ys. Similarly, for inets, tails and id, we have

fox = [[#]]

(51,01, t1,d1) B2 (52,09, t2,da) = iy H(dy+H) * iz
oo = 2]
(s1,01,t1,d1) By (82,02, t9,dy) = (H-dy) xty H 1y
Jiz = [x]

(s1,71,t1,d1) By (82,10, t0,d2) = di+Hds
Now we are ready to apply Theorem 1 and get the following list homomorphism.
segs & inits & tails & 1d = (AL fi, AT&;))
And our almost homomorphism for segs is thus obtained:
segs = m o (AT fi, Al®i). (3)

It would be intersting to see that the above derivation is practically mechanical.
Note that the derivation of the unit of the new binary operator (e.g., Alé;) is
omitted because this is trivial; the new tuple function applying to empty list will
give exactly this unit (e.g., (segs & inits & tails 2 id)[]). The derivation of units
will be omitted in the rest of the paper as well.

4.2 Fusion with Almost Homomorphisms

In this section, we show how to fuse a function with an almost homomorphism, the
second problem (b) as listed at the beginning of Section 4.

It is well known that list homomorphisms are suitable for program transformation
in that there is a general rule called Fusion Theorem [Bird 1987], showing how to
fuse a function with a list homomorphism to get another new list homomorphism.

THEOREM 2. (FUSION) Let h and ([f, ®]) be given. If there exists © such that
Va,y. h(z @ y) =ha @ hy, then ho (f,®]) = (ho f, Q).

This fusion theorem, however, cannot be used directly for our purpose. As seen
in Equation (3), we usually derive an almost homomorphism and we hope to know
how to fuse functions with almost homomorphisms, namely we want to deal with
the following case:

hoo(m o (A} fi, AT).

We’d like to shift m left and promote & into the list homomorphism. Our fusion
theorem for this purpose is given below.

TueOREM 3. (ALMOST FUSION) Let i and (A7 f;, AT®;]) be given. If there
exist @; (i =1,---,n) and a map H = hy X -+ X h,, where h; = h such that for all
Js

Va,y. hi(e®;y)=Ha®; Hy (4)

10 . Z. Hu, H. Ilwasaki and M. Takeichi

then
ho(my o (A} fi, ATDi]) = w1 o (AT (hi o fi), AT @)
Proor. We prove it by the following calculation.
ho(m o (AT fi, ATe;)])
{ By 1 and H }
m o H o (AT fi, AT i)

{ Theorem 2, and the proves below }
™ o [Af(hio fi), AT@i))

To complete the above proof, we need to show that for any = and y,

H (2 (AT®)y) = (Hw) (A7) (Hy)
H o (A7) Af(hio fi)

The second equation is easy to prove. For the first, we argue that

LHS

{ Expanding A, Def. of & }
H(T‘%1 y,.T&),,y)

{ Expanding H, Def. of X }
(hi(x D1 y), b (xEp y))
= { Assumption }

(Hz@1 Hy, -, Ha @, Hy)

{ Def. of 2 A }

RHS

O

Theorem 3 suggests a way of fusing a function h with the almost homomorphism
m o (Al fi, AT@;]) in order to get another almost homomorphism; trying to find
ho, -+, hy together with &y, -, @, that meet the equation (4). Note that, without
loss of generality we restrict the projection function of our almost homomorphisms
to w1 in the theorem.

Returning to our running example, recall that we have reached the point:

mss = maz’ o (sum’x) o (m o (A} fi, ATD;)).

We demounstrate how to fuse sum's with m o (Aff;, AT@;]) by Theorem 3. Let
H = hy X hy X hg X hy where hy = (sum'%), and hg, hs, hy await to be determined.
In addition, we need to derive @4, @4, @3, and @4 based on the following equations
according to Theorem 3:

sum’ s ((s1,41,t1,dy) &; (82,02, t2,d2)) =
(sum' % s1,ho iy, hyty, hady) @; (sum’ s sg, hoia, hyta, hads) (i=1,---,4).

Now the derivation procedure becomes clear; calculating each LHS of the above
equations to promote sum’x into s; and so, and determining the unknown functions
(h; and ©;) by matching with its RHS. As an example, consider the following

Formal Derivation of Efficient Parallel Programs ... : 11

calculation of the LHS of the the equation for « = 1.

(sum's) ((s1,41,t1,d1) Dy (82,12, t9,ds))
{ Def. of @1 }
(sum'x) (51 +r< 52 +He (G X5 02))
{ Define (j1,21) <1 (j2,22) =aer j1 <v j2 }
sum’ % s1 e, sum’ % s g, sum’ % (0 X d2)
{ Cross operator }
(sum’ % 51 4+, sum’ = sy e, (11 Xsumrost 12))
{ Cross operator, sum’' }
(sum’ % s1 +H, sum’ * s9 H, ((sum’ x)Xy (sum’ % i9)))

Matching the last expression with its corresponding RHS:
(su,m' * 81, h/z i], h;{ t17 hr4 (]1) (o8 (S‘HTI’I,/ * So, hg 7:2, h3 t‘z, h4 dg)
will give
hy = hs = sum’x
(s1,01,t1,d1) @1 (82,72, 12, dy) = 81 e, S92 Hh, (B X i),
The others can be similarly derived.
ha = sum’
(bl, Il,flﬂ dl i>)2 (SQ,iz,fQ,dQ) = i ++ (dl‘l‘/) %19
(s1,01,t1,d1) @3 (927i27t2>d2) = (+'dy) %ty H 1ty
(51ﬂ517t17d1) (527i27t27d2) = dl +/ d2

To use Theorem 3, we also need to consider the f part whose results are as follows.

fi (isw) = ((sum's)o fr)a =[([i],v)]
5 (i) = ((.sum'*)ofﬁa: = [([7], »)]
I3 (hx) = ((swm/s)o f3)a =[([i],)]
fi (i,x) = (sum o fi)w = ([i], z)
According to Theorem 3, we soon have
(sum'x) o segs = my o (AL f, AT®;)). (5)

Again, we can fuse max’ with the above almost homomorphism (in this case,
H = maz’ x maz’ x maz’ x id) and get the following almost homomorphism, the
final result for mss.

mss = my O ([A%ﬂ?a A%@‘;]) (6)
where

(917l17t17 dl %’/1 (52 i2 tg,dg) 92 T (tl +]2)
(s1,71,t1,d1) @ (s2,42,t9,d2) = i1 7 (dy +i2)
(51771ﬂt1»d1)&<’ (52,12,t9,do) = (l‘1+d2) 1ty
(91’71’f17d1) ¢§) (qlai’ZatZ:dZ) = d] + dz.

Since the operators of Ajmy and AT@! inside the obtained almost homomorphism
are simple and efficient enough, we need not repeat Step 1 and 2 to make them
efficient according to our derivation procedure given at the beginning of this Sec-
tion. Thus we got our result, the same as informally given by Cole [Cole 1993b].
In practical terms, the algorithm looks so promising that on many architectures.

12 . Z. Hu, H. lwasaki and M. Takeichi

[[x11, x12, ..., x1n],
[x21, x22, ..., x2n], 1P
['>'<'ml,xm2, 1oy XMN] [
(a) Matrix inlist of lists (b) rectangular region
(submatrix)
A an
A

. ' bm ci
atl
v yss b1] ...
[.. [al,..an],[bL,..bm],.] [ci,]
(C) segs2(xss++yss) (d) botsyieldsalist of lists of (e) btsyields alist of rectangles

bottom-up rectangles passing vertically

Fig. 2. The mss2 Problem

We can expect an O(logn) parallel algorithm according to the simple parallel im-
plementation of list homomorphisms (Section 2), observing that C'(Afms) = 1 and

c(Al@)) =1

5. 2-DIMENSIONAL MAXIMUM SEGMENT SUM PROBLEM

In this section, we consider a more complicated problem, namely 2-dimensional
mazimum segment sum problem. In [Smith 1987], the tuple consisting of eleven
functions is used for the definition of a O(logz n) parallel algorithm, but the de-
tailed derivation, which would be rather cumbersome with Smith’s approach, was
not given at all. In the following, we’d like to show that although this problem
looks very difficult it can be solved in a quite similar way as we did for the (1-
dimensional) mazimum segment sum problem resulting in a new efficient parallel
program. It would be very intersting to see that our systematic construction of list
homomorphisms is of much help in discovering new efficient parallel programs.

5.1 Specification of the Problem

Let’s turn to the specification for the 2-dimensional maximum segment sum prob-
lem, mss2, a generalization of mss, which finds the maximum over the sum of all
rectangular subregions of a matrix. The matrix can be naturally represented by a
list of lists with the same length as shown in Fig. 2 (a), and so does its rectangular
subregion as in Fig.2 (b). Following the same thought we did for mss, we define
mss2 straightforwardly as in Fig.3. Here, segs2 computes all rectangular subre-
gions of a matrix, then sum? is applied to every rectangular subregion and sums
up all elements, and finally maz returns the largest value as the result.

Function segs? is defined in a quite similar way to segs. The last equation
reads that all rectangular subregions of zss 4+ yss, a matrix connecting zss and
yss vertically (Fig.2 (c)), are made up from those in both zss and yss, and those
produced by combining every bottom-up rectangular subregion in zss (depicted by

Formal Derivation of Efficient Parallel Programs 13

mss2 : [[(Indez', Int)]] — Int

mss2 = maz' o (sum2x)o seqs?
where

sumn2 = sum’ o sum'*
segs? ||]

seqs? [zs] = [] = (segs zs)

segs2 (wss Hyss) = segs2 xzss +<r segs2 yss +<r
concat ((bots wss)Yx, (tops yss))

bots] ~]
bots [zs] = []*([] * (segs zs))

bots (zss ++yss) = ((bots 155) Tr(e,y).(4+y)xe (bts yss)) Ty (bots yss)
tops [] =]

tops [xs] = []=*([]* ‘(scgs zs)) ’

tops (wss +Hyss) = (tops zss) Ty ((bts £5s) Tia(e,y).((wr)xy) (tOPS yss))
bts [] =]

bts [ws] = [] * (segs zs)

bts (1ss +H yss) = (bts wss) Ty (bts yss)

Fig. 3. Specification for mss2 Problem

shallow-grey rectangle) with every top-down rectangular subregion in yss (depicted
by dark-grey rectangle) sharing the same edge.

Let’s see the definition of the total order <’ among rectangular subregions. Note
that the index type Indez’ in this case should be a pair denoting the row and
column of elements. So we define <" by [[((r1,c1),21), -], [, ((r2, e2),)] <'
[0 ey s oo () wo)l] =aey [(r1sen)s (rasea)) <p (7, ed), (7o)

For other functions in Fig. 3, bots is used to calculate a list of lists each of which
comprises all rectangles with the same bottom edge. Symmetrically, tops calculates
a list of lists each of which comprises all rectangles with the same top edge. They
are defined by using another function bts which yields a list of rectangles passing
through the matrix vertically (Fig.2 (e)).

It should be noted that segs, sum’ and maz’ are in fact polymorphic functions
over any index type. This is why we can use them in the definition of segs2 even
though the index type is Index’ instead of Index as in Fig. 3.

5.2 Derivation of an List Homomorphism for mss2

Our derivation of an almost homomorphism for mss2 from the specification in Fig. 3
is carried out according to the procedure in Section 4. First, we derive an almost
homomorphism from the recursive definition of segs2. Then, we fuse (sum2x) with
the derived almost homomorphism to obtain another almost homomorphism and
again repeat this fusion for maa’. Finally, assuming that we've got the almost list
homomorphism m o ([f,®]) for mss2, we repeat the above procedure to find an
efficient parallel implementation for f and .

Step 1: Deriving an almost homomorphism for seqgs?2. We’d like to apply the
tupling theorem for this derivation. First, we determine the functions that should

14 . Z. Hu, H. lwasaki and M. Takeichi

be tupled, similar as we did for segs in Section 4. From the definition of segs2:

seqs? (wss 4+ yss) = seqs? xss +r~r seqs? yss +H concat((botswss) Y x,, (topsyss))

we know that segs2 should be tupled with bots and tops, because segs2 and bots
traverse over the same list zss whereas segs2 and tops traverse over the same list yss
as underlined. Similarly, the definitions of bots and tops requires that bts be tupled
with bots and tops. In summary, the functions to be tupled are segs2, bots, tops
and bts, i.e., our tuple function will be:

segs2 & bots & tops & bis.

Next, we rewrite the definition of each function in the above tuple to be in the form
of (2), L.e., deriving fy, @y for segs?, fa, @y for bots, fs, B3 for tops, and fy, Dy for
bts. This is straightforward. The results are as follows. For example, from the
definition of segs2, we can easily derive that

f1 as =[] = (segs xs)

(51 . b1 y t1) d1) (S50 (bz, t), dz) = 57 '|—|'</ 59 'H‘</ concat (b] 'I‘X# tz)

fo w5 = [([] % (segs as))

(51,01, t1,d1) @2 (52,02, t2,d2) = (b1 Vxa,y) (4 y)ew d2) Tap ba

f3 ws =[] = ([] * (segs ws))

(s1,b1,t1,d1) D3 (s2,D2,t2,d2) =t1 Yoy (dy Tige) (o) ey t2)

fa ws =[] = (segs ws)

(s1,b1,t1,d1) By (52,02, t2,d2) = dy T4 dy
Finally, we apply Theorem 1 and get the following list homomorphism.

segs2 o bots ~ tops » bts = (Al fi, Ate))

It follows that we have our almost homomorphism for segs2:

segs? = m o (A fi, ATD))-
Step 2: Fusion with almost homomorphisms. Recall that we have reached the
point:
mss2 = max' o (sumfx) o (my o (A} fi, Ald)).

We proceed to fuse sum2x with w1 o (A% f;, AT@;])) by Theorem 3, and then repeat
this fusion for maz’, giving the following result.

mss2 = m o (A} fl, ATat) (7)
where
(51ab1at17d1) P (82,02, t9,dy) =517 55 T(T/ (01 Ty t2))
(s1,D1.t1,d1) B (52, b2, t2,d2) = bl T dy) Ty by
(.91,b17t1,d1) 6[-'/3 (92,b27t2, Z) = TT ((]1 T_|_ 'l‘z)
(51,01, 1, dy) DY (52,09, t2,dy) = dy T4 dy
and
fi = max’ o (sum’%) o segs
5 = (sum/x) o segs
fi = (sum’x) o segs

fi = (sum/x) o segs

Formal Derivation of Efficient Parallel Programs 15

Step 3: Improving operators in list homomorphisms. Equation (7) has given a
homomorphic solution to the 2-dimensional maximum segment sum problem. It is,
however, not so obvious about efficient parallel implementation for f/. We need to
repeat the Step 1 and 2 to derive true (almost) list homomorphisms for them. In
fact, this has been done in Section 4 as given in Equation (5) and (6). It is not
difficult to check that they (f/s) can be parallelly implemented in O(logn) parallel
time.

Let n be the size of the input matrix. By a simple divide-and-conquer implemen-
tation of list homomorphisms, the derived program can expect a

maz(C(ATf]), (O(log n) x C(ATE)))

parallel algorithm. With assumptions that Ty and Xy can be implemented fully
in parallel, i.e., C(YT5) = C(®) and C(Xz) = C(®), we can see that C(Al@d)) =
O(log n) due to the inherited parallelism in the reduction (1 /). It follows that
mss2 is a

max(C(ATf!), O(log® n))

parallel algorithm. We, therefore, obtain a O(log2 n) parallel program for the 2-
dimensional maximum segment sum problem.

6. CONCLUDING REMARKS

In this paper, we propose a formal and systematic approach to the derivation of
efficient parallel programs from specifications of problems via manipulation of al-
most homomorphisms, namely the construction of almost list homomorphisms from
recursive definitions (Theorem 1) and the fusion of a function with almost homo-
morphisms (Theorem 3). It is different from Cole’s informal way[Cole 1993b)].

We demonstrate our idea through the derivation of efficient parallel algorithms
for several non-trivial problems. After the initial naive solution, all the derivation
are proceeded in a formal setting based on our theorems and algebraic identities
of list functions. Therefore, the resulting parallel algorithm is guaranteed to be
semantically equivalent to the initial naive but inefficient solution. Furthermore,
most of our derivation is mechanical, which would be expected to be used in a
parallel compiler. Asin Section 4.1, the derivation of almost homomorphisms from
mutually-recursive defined functiouns is fully mechanical. What is difficult for being
fully automatic is the fusion with almost homomorphism as shown in Section 4.2
where new functions have to be derived based on the equation (4) in the Almost
Fusion Theorem. But some attempts have been made to make the fusion process
automatic with some suitable restrictions as in [Gill, Launchbury, and Jones 1993;
Takano and Meijer 1995; Hu, Iwasaki, and Takeichi 1996b].

Tupling and fusion are two well-known techniques for improving programs. Chin
[Chin 1992; Chin 1993] gave an intensive study on it. His method tries to fuse
and /or tuple arbitrary functions by fold-unfold transformations while keeping track
of function calls and using clever control to avoid infinite unfolding. In contrast
to his costly and complicated algorithm to keep out of non-termination, our ap-
proach makes use of structural knowledge of list homomorphisms and constructs
our tupling and fusion rules in a calculational style where infinite unfoldings can
be definitely avoided.

16 . Z. Hu, H. Ilwasaki and M. Takeichi

Our approach to the tupling of mutual recursive definitions is basically similar to
the generalization algorithm [Takeichi 1987]. Takeichi showed how to define a higher
order function common to all functions mutually defined so that multiple traversals
of the same data structures in the mutual recursive definition can be eliminated.
Because higher order functions are suitable for partial evaluation but not good
for program derivation, we employ tupled functions and develop the corresponding
fusion theorem. A similar idea to tupling can also be found in [Fokkinga 1992].

Construction of list homomorphisms has gained great interest because of its im-
portance in parallel programming. Barnard et.al. [Barnard, Schmeiser, and Skil-
licorn 1991] applied the Third Homomorphism Theorem [Gibbons 1994] for the
language recogunition problem. The Third Homomorphism Theorem says that an
algorithm h which can be formally described by two specific sequential algorithms
(leftwards and rightwards reduction algorithms) is a list homomorphism. Although
the existence of an associative binary operator is guaranteed, the theorem does
not address the question of the existence — let alone the construction — of a di-
rect and efficient way of calculating it. To solve this problem, Gorlatch [Gorlatch
1995] imposed additional restrictions, left associativity and right associativity, on
the leftwards and rightwards reduction functions so that an associative binary op-

~

erator @ could be derived in a systematic way. However, finding left-associative
binary operators is usually not easier than finding associative operators. Recently
Gorlatch [Gorlatch 1996a; Gorlatch 1996b] extended his previous work and pro-
posed an idea of synthesizing list homomorphisms by generalizing both leftwards
and rightwards reduction functions. Since his idea is studied in an informal way
and the generalization algorithm is not given, it is not so clear how to do it in
general. In comparison, rather than relying on the Third Homomorphism Theorem
we construct list homomorphisms based on tupling and fusion transformation. Our
derivation is more constructive: we derive list homomorphism directly from mutual
recursive representations and then fuse it with other functions.

Smith [Smith 1987] applied a strategy of divide-and-conquer approach to both
1-dimensional and 2-dimensional mss problems as applications. He constructs the
composing operator (analog to our associative operator 43) by employing the suit-
able mathematical properties of the problem. Although our initial specification is
less abstract than his, our derivation is more systematic and less prone to errors.
As seen in the paper, by our approach one could concisely derive a O(log2 n) par-
allel program for the 2-dimensional mss problem. In Comparison, in [Smith 1987]
the tuple counsisting of eleven functiouns is given for the 2-dimensional mss problem
but the corresponding manipulation with Smith’s approach is not presented at all
which must be cumbersome.

ACKNOWLEDGMENTS

Many thanks are to Akihiko Takano, Fer-Jan de Vries, Wei-Ngan Chin, Sergei
Gorlatch for many enjoyable discussions. Thanks are also to the referees for their
useful advice.

REFERENCES

BARNARD, D., SCHMEISER, J., AND SKILLICORN, D. 1991. Seriving associative operators for
language recognition. In Bulletin of EATCS (43), pp. 131-139.

BIRD, R. 1984. The promotion and accumulation strategies in transformational programming.

Formal Derivation of Efficient Parallel Programs ... : 17

ACM Transactions on Programming Languages and Systems 6, 4, 487-504.

BIrD, R. 1987. An introduction to the theory of lists. In M. Broy (Ed.), Logic of Programming
and Calculi of Discrete Design, pp. 5 42. Springer-Verlag.

CAI, W. AND SKILLICORN, D. 1992. Calculating recurrences using the Bird-Meertens Formalism.
Technical report, Department of Computing and Information Science, Queen’s University.

CHIN, W. 1992. Safe fusion of functional expressions. In Proc. Conference on Lisp and Func-
tional Programming, San Francisco, California.

CHIN, W. 1993. Towards an automated tupling strategy. In Proc. Conference on Partial Fval-
uation and Program Manipulation, Copenhagen, pp. 119 132. ACM Press.

CHIN, W. 1996. Parallelizing conditional recurrences. In Annual Furopean Conference on Par-
allel Processing, LNCS 1123, LIP, ENS Lyon, France, pp. 579 586. Springer-Verlag.

CoLE, M. 1993a. List homomorphic parallel algorithms for bracket matching. Technical report
CSR-29-93 (Aug.), Department of Computing Science, The University of Edinburgh.

CoLE, M. 1993b. Parallel programming, list homomorphisms and the maximum segment sum
problems. Report CSR-25-93 (May), Department of Computing Science, The University of
Edinburgh.

FEATHER, M. 1987. A survey and classification of some program transformation techniques. In
TC2 IFIP Working Conference on Program Specification and Transformation, Bad Tolz
(Germany), pp. 165 195. North Holland.

FoKKINGA, M. 1992. A gentle introduction to category theory — the calculational approach —.
Technical Report Lecture Notes (Sept.), Dept. INF, University of Twente, The Netherlands.

GIBBONS, J. 1994. The third homomorphism theorem. Technical report, University of Auckland.

GILL, A., LAUNCHBURY, J., AND JONES, S. P. 1993. A short cut to deforestation. In Proc. Con-
ference on Functional Programming Languages and Computer Architecture, Copenhagen,
pp. 223-232.

GORLATCH, S. 1995. Constructing list homomorphisms. Technical Report MIP-9512 (Aug.),
Fakultat fiir Mathematik und Informatik, Universitdt Passau.

GORLATCH, S. 1996a. Systematic efficient parallelization of scan and other list homomorphisms.
In Annual European Conference on Parallel Processing, LNCS 1124, LIP, ENS Lyon,
France, pp. 401 408. Springer-Verlag.

GORLATCH, S. 1996b. Systematic extraction and implementation of divide-and-conquer paral-
lelism. Microprocessing and Microprogramming 41, 571-578. (Also appears in PLILP’96).

Hu, Z., Iwasaki, H., AND TAKEICHI, M. 1996a. Construction of list homomorphisms via tupling

and fusion. In 21st International Symposium on Mathematical Foundation of Computer

Science, LNCS 1113, Cracow, pp. 407 418. Springer-Verlag.

7., Iwasaki, H., AND TAKEICHI, M. 1996b. Deriving structural hylomorphisms from recur-

sive definitions. In ACM SIGPLAN International Conference on Functional Programmaing,

Philadelphia, PA, pp. 73 82. ACM Press.

7., Iwasaki, H., AND TAKEICHI, M. 1996¢c. Formal derivation of parallel program for 2-

dimensional maximum segment sum problem. In Annual Furopean Conference on Parallel

Processing, LNCS 1123, LIP, ENS Lyon, France, pp. 553-562. Springer-Verlag.

MEUER, E., FOKKINGA, M., AND PATERSON, R. 1991. Functional programming with bananas,
lenses, envelopes and barbed wire. In Proc. Conference on Functional Programming Lan-
guages and Computer Architecture (LNCS 523), Cambridge, Massachuetts, pp. 124-144.

PETTOROSSI, A. AND PROIETTI, M. 1993. Rules and strategies for program transformation. In
IFIP TC2/WG2.1 State-of-the-Art Report, pp. 263-303. LNCS 755.

SMITH, D. 1987. Applications of a strategy for designing divide-and-conquer algorithms. Science
of Computer Programming 9, 213-229.

TAKANO, A. AND MEUJER, E. 1995. Shortcut deforestation in calculational form. In Proc. Con-
ference on Functional Programming Languages and Computer Architecture, La Jolla, Cal-
ifornia, pp. 306-313.

TAKEICHI, M. 1987. Partial parametrization eliminates multiple traversals of data structures.
Acta Informatica 24, 57-77.

=

Hu,

Hu,

=

