HAYT b 17’#4%@%15@]*% (19985 F) a3

D4-2

Implementing List Homomorphisms in Parallel

HRiL
Zhenjiang HU

e Sk

Hideya TWASAKI

Bili IEA
Masato TAKEICHI

WRURSE KR TR AR

Department of Information Engineering

University of Tokyo
({hu,iwasaki,takeichi}@ipl.t.u-tokyo.ac.jp)

=

List homomorphisms are a useful parallel template (skeleton) in parallel programming, not
only because they enjoy many algebraic rules suitable for program manipulation, but also be-
cause they can be “obviously” implemented in parallel using the divide-and-conquer paradigm.
However, such obvious implementation may be potentially sequential because of some hidden
dependence. This paper is intended to show that homomorphisms can be efficiently imple-
mented in parallel, but the implementation is far from being that trivial. We shall propose
a new algorithm for transforming list homomorphisms into NESL programs in which the so-
called scan operator effectively encapsulates a parallel structure common to many parallel
architectures. We illustrate our method by deriving a novel parallel algorithm for bracket

matching.

1 Introduction

So many studies have been devoted to making
use of homomorphisms, a parallel skeleton, in par-
allel programming [Col95] [GDH96) [Gor96] [HIT97]
[HTC98).

List homomorphisms (or homomorphisms for
short) [Bir87) are those functions on (nonempty)
finite lists that promote through list concatena-
tion:

hiz+y =

where @ is an associative operator. Intuitively,

hz@hy

the definition of list homomorphisms means that
the value of A on the larger list depends in a par-
ticular way (using binary operation @) on the val-
ues of h applied to the two pieces of the list. The
computations of hz and hy are independent of
each other and can thus be carried out in parallel.

This simple equation can be viewed as express-
ing the well-known divide-and-conquer paradigm
in parallel programming.

So we have taken it for granted that the paral-
lelism in homomorphisms can be easily developed
because of its divide-and-conquer form. However,
the thing is not so simple as it appears. To appre-
ciate the problem, consider the homomorphism in
Figure 1, as being derived in [HTC98], determin-
ing whether the brackets of ’(* and)’ is matched
or not in a a given string.

Note that tup function is a homomorphism re-
turning a function (rather than a basic value)
as its result. This kind of homomorphisms usu-
ally hide dependence between two recursive calls
which are expected to be computed indepen-
dently. In the definition of tup (z ++y), the com-
putation of tup y in fact requires (depends on) the

—273—-

shprc=a
where (s.g1,.g2) = tup z ¢
tup [a] = Ac.

if a=="("then (¢ +1==0, True, 1)
else if @ == ") then (c—1==0,e > 0,-1)
else (¢ == 0, True,0)
tup (z ++y) = Ac.
let ("":ﬁylzuﬂ'ﬂ.’z) =tlupzrc
(84> G1y>G2y) = tup y (g2z +¢)
mn (ﬂl.t A Sy, iz N Gy, G2z +92y)

E1 A homomorphism for bracket matching

result of gy, from the computation of tup x ¢. As
a result, if we simply use the traditional way of
computing tup z and fup’ y independently to get
result for tup (z +-y), many computations are re-
mained and will be performed sequentially until
the second parameter ¢ for tup is applied.

This paper is intended to show that homomor-
phisms can be efficiently implemented in paral-
lel, but this implementation is far from being
that trivial. To be more concrete, we shall pro-
pose a novel transformation effectively turning list
homomorphisms into NESL programs [Bled2] in
which the so-called apply-to-each and scan oper-
ators encapsulate efficient parallel computational
patterns. We choose the NESL as our target, be-
cause practically efficient code can be generated
from NESL programs for a variety of architec-
tures, from vector multiprocessors (CRAY C90
and J90) to distributed memory machines (IBM
SP2, Intel Paragon, CM-5). Therefore, efficiently
transforming homomorphisms to NESL programs
can lead to efficient codes for these parallel archi-
tectures.

2 List Homomorphisms

List homomorphisms (or homomorphisins for
short) are an important concept in Bird-Meertens
Formalisms (BMF) [Bir87], and are central to this
paper. They are functions on finite lists that pro-
mote through list concatenation, as precisely de-
fined later. Before giving the definition, we intro-
duce some notational conventions in BMF which

will be used in this paper.

In BMF, Function application is denoted by a
space and the argument which may be written
without brackets. Thus f a means f (a). Function
application binds stronger than any other opera-
tor, so fa &b means (fa) @b, but not f(a @ b).
Function composition is denoted by a centralized
circle o. By definition, we have (fog)a = f(ga).
Function composition is an associative operator,
and the identity function is denoted by id.
Definition 1 ((List) Homomorphism) A func-
tion h satisfying the following equations is called
a list homomorphism:

h [a] = ka

h(z+y) = hzdhy
where @ is an associative binary operator. We
write ([k, ®] for the unique function h. O

Two important homomorphisms are map and
reduction. Map is the operator which applies a
function to every element in a list. It is written
as an infix *. Informally, we have

k + [Ty @ay. ves Bl = (k@1 ki@s, o vplomn]:
Reduction is the operator which collapses a list
into a single value by repeated application of some
binary operator. It is written as an infix /. In-
formally, for an associative binary operator @, we
have

@/ [r1,32,...,2p] =21 D TP - D Tp.

It has been argued that * and / have simple
massively parallel implementations on many ar-
chitectures [Skioo]. For example, ¢/ can be com-
puted in parallel on a tree-like structure with the
combining operator @ applied in the nodes, while
k* is computed in parallel with & applied to each
of the leaves.

The relevance of homomorphisms to parallel
programning is basically from the komomorphism
lemma [Bir87):

(5 @) = (&/) o (k)
saying that every list homomorphism can be writ-
ten as the composition of a reduction and a map.

However, as argued in the introduction, efficient
implementing homomorphisms in parallel turns
out to be difficult when the homomorphisms de-

—274 -

note functions that accept a list and return a func-
tion rather than a basic value. To deal with it, in
this paper, we assume that our input is a first or-
der homomorphism, but it may have additional
accumulation parameters and its result may con-
tain many components. To be precise, we give
the following definition of our input list homo-
morphisms.

Definition 2 (Input Homomorphism) Let 4
be a first order homomorphism, which accepts
p accumulation parameters and returns a result
with ¢ components. It is defined by

b ([a], (wr,...,wp)) = (B, [a,W],..., Ey,[a, W))
h(z+Hy, (w,...,wp)) =
let
(hays .o yhey) = h (2, (Eay W, H],..., E. [W, H]))
(Byyy- s hy,) = h (y, (Ey, W, H),.. - By, [W, H])
in
(Er[H, W], ..., E,[H,W])

where W is an abbreviation for w,, . .
1h':lquh'yla ;|

1 %Yq "
yTn] to represent an expression contain-

.y, and H
for hy,,. .. In addition, we use
E[Zl, v
ing free variables partly from z,,...,z,.
O
For instance our sbp can be reexpressed as fol-
lows.
sbp (z,c) = s
where (3, g1,92) = tup (z,¢)
tup ([a]. c) = (k, (a.c), ky, (a,c),ky, (a))
tup (z +y,c) =
let (s2,912,02:) = tup = ¢
(8y: 91y, 92y) = tup y (c + g2z)
in (g1z A 8y, 91z A g1y, 920 + G2y)

where

ki (a,¢) = ifa=="("thenc+1==0
else if a == ") then ¢ — 1 ==
else c ==

kg, (a,e) = ifa=="("then True
else if a == ")’ then ¢ > 0
else True

kg, (a) = ifa=="(then 1
else if a == ") then —1
else 0

3 NESL

This paper intends to implement a first order
homomorphism in NESL, a practical parallel lan-
guage which can run on variety of parallel ar-
NESL [Ble92] is
a strongly-typed strict first-order functional lan-

chitectures (see Introduction).

guage. It runs with an interactive environment,
and is loosely based on the ML language. The
language uses sequences like
1,20, ., 2p)
as a primitive parallel data type. Parallelism is
achieved essentially by using two parallel con-
structs. One is the so-called apply-to-each con-
struct:
{f(a) : ain seq}
which is read as “in parallel for each a in the se-
quence seq, apply f to a”. It is similar to list
comprehension in many functional languages.
The other is the scan construct [Blesg]:
®_scan [z1,zg,...,2,] =

[L@JJ‘.] DI2,T1D - P Iu—]]
where & is an associative operator with tg as its

identity element. Note that reduct is a special
case of scan defined by
@-reduct [21,72,...,20) =21 B -+ B z4,.

4 Transformation Algorithm

The major difficulty for efficiently implement-
ing homomorphisms in parallel, as explained in
the introduction, is the dependence relationship
inside homomorphisms themselves. So, we should
be clear about such dependence.

We shall consider our input homomorphism A
in Definition 2, which has p (accumulation) pa-
rameters wy,...,w,, and returns q components
h1,-++, hg as its result. We have four kinds of de-
pendence relationship, namely

1. Parameter-Parameter Dependence: one pa-
rameter depends on another parameter;

2. Parameter-Result Dependence: a parameter
depends on a component of the result;

3. Result-Parameter Dependence: a component

—275—

2 Dependence graph for tup.

of the result depends on an accumulating pa-
rameter;
4. Result-Result Dependence: a component of
the result depends on another component.
Take as an example the homomorphism tup for
defining sbp. It has a single accumulating param-
eter ¢ and three components s, g; and gz in the
Fig.
tup. It has the parameter-result dependence be-

result. 2 gsummarizes the dependences in
tween ¢ and gz, the result-parameter dependences
between ¢ and g, and between ¢ and s, and the
result-result dependence between s and g;.

The idea underlying our transformation algo-
rithm is to reduce the number of both the param-
eters and components by memoization in vectors
(sequences) with scans. We present our transfor-
mation algorithm by induction over the number
of parameters. To simplify our presentation, we
assume that the dependence graph has no cyclic.
Our algorithm is summarized as follows.

1. If h has no parameter, we use the homomor-
phism lemma to implement h by apply-to-
each and reduct.

2. Otherwise, we repeatedly compute and mem-
oize the components that do not depend
on the accumulating parameters, and com-
pute and memoize parameters not depend-
ing on components that have not been com-
puted, until we finish computing all parame-
ters. Goto 1.

Recall our example of tup. It has a single ac-
cumulating parameter depending on the gz com-
ponent. We can apply the transformation algo-
rithm. The following gives our parallel program
for shp in a pseudo NESL code, where we use sev-

eral variables to show memoized intermediate re-
sult in each computation step.

shp (z,¢) =3
where (s,91) = tup (z,¢)
tup (z,c) =
let ga8 = +.scan [ky, (a) : ain 7]
es=[c+a : ain gs]

(z1,11) & (T2, 42) = (22 A1, T2 Ay2)
in & _reduce
[(ks (a,c) kg, (a,€)) : ¢ ines, ain 2]

As shown above, we compute and memoize go
with scan first, and then compute and memoize
the parameter ¢ with scan again, and finally com-
pute g and s; in parallel.

According to the cost model for NESL program,
we actually come to an efficient O(log N) parallel
program, where N denotes the size of the input
string.

g£EUM

[Bir87] R. Bird. An introduction to the theory of lists. In
M. Broy, editor, Logic of Programmang and Calculi of
Discrete Design, pages 5-42. Springer-Verlag, 1987.

[Ble89] Guy E. Blelloch. Scans as primitive operations.
IEEE Trans. on Computers, 38(11):1526-1538, Novem-
ber 1989,

[Ble92] G.E. Blelloch. NESL: a nested data parallel lan-
guage. Technical Report CMU-CS-92-103. School of
Computer Science, Carnegie-Mellon University, Jan-
uary 1992.

[Col95] M. Cole. Parallel programming with list homo-
morphisms. Parallel Processing Letters, 5(2), 1995.
(GDH96] Z.N. Grant-Duff and P. Harrison. Parallelism via
homomorphism. Parallel Processing Letters, 6(2):279-

295, 1996.

[Gor96] S. Gorlatch. Systematic extraction and implemen-
tation of divide-and-conquer parallelism. In Proc. Clon-
ference on Pregramming Languages: Implementation,
Logics and Programs, LNCS 1140, pages 274-288.
Springer-Verlag, 1996.

[HIT97] Z. Hu, H. Iwasaki, and M. Takeichi. Formal
derivation of efficient parallel programs by construc-
tion of list homomorphisms. ACM Transactions on
Programming Lenguages and Systems, 19(3):444-461,
1997.

[HTC98] Z. Hu, M. Takeichi, and W.N. Chin. Paralleliza-
tion in calculational forms. In 25th ACM Symposium en
Principles of Programming Languages, pages 316-328,
San Diego, California, USA, January 1998.

[Ski90] D.B. Skillicorn. Architecture-independent parallel
computation. IEEE Computer, 23(12):38-51, Decem-
ber 1990,

=216~

