
日本ソフトウェア科学会第 21回大会（2004年度）論文集 1

A Combinator Library for Specifying Program Transformation

Tetsuo Yokoyama†, Zhenjiang Hu†,††, Masato Takeichi†
†Dept. of Mathematical Informatics

Graduate School of Information Science and Technology

The University of Tokyo

{tetsuo yokoyama,hu,takeichi}@mist.i.u-tokyo.ac.jp
††PRESTO 21, Japan Science and Technology Agency

We present an embedded domain specific language for specifying program transformations. The lan-

guage is implemented as a monadic combinator library in Haskell. The transformations are done at

compile time using the mechanism of Template Haskell. The library provides a modular way to structure

abstract and intuitive transformation strategies by higher-order matching and monadic programming.

1 Introduction

Program transformation bridges the gap between
abstraction and efficiency. Glasgow Haskell Com-
piler (GHC) [1], enables users to write clear specifi-
cation together with transformation rules, by trans-
forming original codes into efficient ones automat-
ically by rewriting at compile time [4] . However,
the patterns in GHC are first order, and too weak
to distill the parts of the structure of programs.

Higher-order patterns play an important role in
program transformation [7], but they are rarely
used in functional programming. In this paper,
we design a monadic combinator library for pro-
gram transformation in Haskell. The combinator
library uses higher-order patterns as first-class val-
ues which can be passed as parameters, constructed
by smaller ones in compositional way, returned as
values, etc. As a result, our libraries provide more
flexible binding than first-order ones, and enables
more abstract and modular description of program
transformation.

Since the combinator is embedded in Haskell,
users do not need to learn other languages than
Haskell, and enjoy all the benefits of the host lan-
guage, such as type checking, module system, de-
velop environment, etc. Thanks to the mechanism
of Template Haskell [5], all the transformation spec-
ified using our libraries are expanded at compile
time. Our library, together with all codes in this
paper, has been tested on GHC 6.2.1.

2 A Combinator Library

As a usual construction of combinator libraries,
we consider what data type our combinator convey,
and design basic combinators.

2.1 Data Type of Program

We use meta-programming features to manipu-
late programs as values. Template Haskell provides
a mechanism to handle abstract syntax trees of
Haskell in Haskell itself. Enclosing brackets [| |]

(quote) make programs abstract syntax tree whose
type is ExpQ (= Q Exp), and the inverse operation
is unquote described by a dollar $. For example,
given a function to calculate the sum of a given list,
sum, which has type1 [Int] -> Int, [| sum |]

has type ExpQ, whereas $([| sum |]) has the same
type as sum.

Unfortunately, type ExpQ is not enough for in-
ner representation of programs. It needs two extra
properties. Firstly, the inner representation of a
program is a closure and should be represented as
a tuple of an expression and an environment map-
ping from variables to closed expressions. Secondly,
during program transformation, there is possibly
more than one candidate program. Therefore, dur-
ing program transformation, the data representa-
tion of program should be a list of closures.

1Strictly speaking, the type of function sum is Num a ⇒
[a] → a in Haskell. Here, for simplicity, we ignore type classes
and polymorphism.

日本ソフトウェア科学会第 21回大会（2004年度）論文集 2

e ExpQ ExpY
[| |]$ runYret

Fig. 1: Relationship of Types

<== ExpQ -> ExpQ -> Y ()

==> ExpQ -> ExpQ -> RuleY

<+ ExpY -> ExpY -> ExpY

>> ExpY -> ExpY -> ExpY

casem ExpQ -> [RuleY] -> ExpY

Fig. 2: Basic Combinators

Monad is a way to structure programming and
provides such an easy treatment of program. One
may construct a new monad, combining aspects of
both operating lookup and update of environment
and keeping track of a list of expressions. A more
straightforward way is to define a combined monad
consisting of smaller ones.

type ExpY = Y ExpQ

type Y e = StateT Subst (ListT Q) e

Here, Subst is a mapping from variables to closed
expressions, and StateT and ListT are monad
transformers which are defined in Haskell Hierar-
chical Libraries of GHC. Expanding the definition
of the types ExpY gives

StateT (Subst -> ListT (Q [(ExpQ, Subst)]))

which means that the monad keeps track of a list of
tuples of an expression (ExpQ) and an environment
(Subst).

We use ret to lift ExpQ into ExpY. We use runY

back to ExpQ from ExpY. The relationship of those
types is summarized in Fig 1.

2.2 Basic Combinators

Our combinator has five basic constructs; match
(<==), rule (==>), deterministic choice (<+), se-
quence (>>), and case-selection casem. Types of
the basic combinators are summarized in Fig. 2.

The essential construct is match

(<==) :: ExpQ -> ExpQ -> Y ()

pat <== term

which yields a substitution (match) that makes pat-
terns (pat) and terms (term) to be equal.

For example, match

[| \a x -> $oplus a (bign x, sum x) |]

<== [| \a x -> if a > sum x

then a : bign x

else bign x |]

yields substitution

{ $oplus := \x (b,s) ->

if x > s then x : b else b }

Note that annotation $ means unquote. Thus, the
above match can be transformed into

{ oplus := [| \x (b,s) ->

if x > s then x : b else b |] }

Function $oplus is a second-order pattern and to
obtain the match we used deterministic higher-
order matching [7].

A transformation rule is taking an expression and
returns a list of closures.

type RuleY = ExpQ -> ExpY

A transformation rule is constructed by operator
(==>).

(==>) :: ExpQ -> ExpQ -> RuleY

(pat ==> body) term = do pat <== term

ret body

Here, function ret implicitly applies the match kept
in monad to body. Using them, meta version of case
is to be

casem :: ExpQ -> [RuleY] -> ExpY

casem sel (r:rs) =

r sel <+ casem sel rs

Operator (<+) is deterministic choice. It returns
the first argument if it is not empty. Otherwise, it
returns the second argument.

For simplicity, we use long arrows (<===) and
(===>). They are the same as short arrows except
types are

日本ソフトウェア科学会第 21回大会（2004年度）論文集 3

module Bign where

import Prelude hiding (sum)

bign [] = []

bign (x:xs) =

if x > sum xs then x : bign xs

else bign xs

sum [] = 0

sum (x:xs) = x + sum xs

Fig. 3: Specification

(<===) :: ExpQ -> ExpY -> Y ()

(===>) :: ExpQ -> ExpY -> RuleY

Sequencing of binding new environments can be re-
alized by combining matches by operator (>>).

(pat1 <== term1) >> (pat2 <== term2)

which can be written as sequence of match using do
notation.

do pat1 <== term1

pat2 <== term2

3 An Application

3.1 Programming Program Transformation

Consider, for example, function bign defined in
Fig. 3 that returns a list whose elements are big-
ger than the summation of the original following
list. The inefficiency of the function is caused from
function sum in the condition of the recursive case
of function bign. Each iteration of function bign,
function sum is computed. Thus the time complex-
ity of function bign is proportional to the square
of the size of the input list, i.e., (O(n2)). But if
both the result of function bign and also that of
function sum are kept track of, the time complex-
ity would be linear. Tupling transformation [2] is
known to enable such transformation.

It is often the case that programmers write trans-
formations of functional program on the back of an
envelope, and they only write the result program.

Therefore, a way to transform a program, i.e., the
invention effort for efficiency which is especially use-
ful for refactoring and improving efficiency of the
program, is generously abandoned.

On the other side, we adopt the approach of
Calculation Carrying Program [6] in which people
write a clear program with transformation rules
specifying how to make it efficient. Thus, pro-
gram itself is also well documented program. Us-
ing our libraries, we can annotate the transforma-
tion strategies in a code as Fig. 4. The preproces-
sor that we implement transforms it into Template
Haskell’s code. The program represents a clear
specification; if we assume that function tupling

does nothing, the value e would be retrieved from
[| \x -> (bign x, sum x) |] and the first ele-
ment of the body would be bign x, which matches
the specification of the transformation.

Thanks to the abstraction of higher-order pat-
terns, we can write the transformation rules almost
as it is. The formal definition of tupling transfor-
mation is

h x = (f x, g x)
f [] = ef

f (a : x) = a⊕ (f x, g x)
g [] = eg

g (a : x) = a⊗ (f x, g x)

h = let a¯ (x, y) = (a⊕ (x, y), a⊗ (x, y))
in foldr (¯) (ef , eg)

and can be straightforwardly programmed in Fig. 5.

3.2 Evaluation

We demonstrate evaluation of the example of
the previous subsection. Transformation consists
of three parts: specification (Fig. 3), application
of transformation (Fig. 4), and transformation rule
(Fig. 5). In Fig. 4 line 3, we import module
ProgramTransformation which contains our com-
binators. In line 15,

tupling [| \x -> (bign x, sum x) |]

is called. Function tupling is defined in Fig. 5. In
line 7, meta variables f and g are bound as

{ $f := bign, $g := sum }

日本ソフトウェア科学会第 21回大会（2004年度）論文集 4

module Main where

import Prelude hiding (sum)

import ProgramTransformation

import Tupling

import Bign

fastbign =

$(runY (

let laws x = casem x [

[| sum [] |] ==> [| 0 |],

[| \x xs -> sum (x:xs) |] ==> [| \x xs -> x + sum xs |],

[| bign [] |] ==> [| [] |],

[| \x xs -> bign (x:xs) |] ==>

[| \x xs -> if x > sum xs then x : bign xs else bign xs |]]

in do e <- tupling laws [| \x -> (bign x, sum x) |]

ret [| fst . $e |]))

Fig. 4: Application of Transformation

Similarly, line 8,9,10 bind oplus, eg, and otimes.
In line 8, they are substituted. Then right hand
side of the match become

[| \a x -> bign (a:x) |]

which is unfolded by laws defined in Fig. 4 and
match appeared before is obtained. Similarly, line
10 becomes match

[| \a x -> $oplus a (bign x, sum x) |]

<== [| \a x -> a + sum x |]

and returns substitution

{ $oplus := \x (b,s) -> x + s }

All the substitution obtained before is applied in
line 11 and returns the result expression. Back to
Fig. 4, it is substituted into e, function runY ex-
tracts ExpQ from ExpY, and it is unquoted by $,
which is the result program. All the evaluation is
done at compile time.

Fig. 6 shows time complexity of function bign

and fastbign. The experimental environment is
GHC 6.2, HYLO+GHC 5.04.3 and 2 CPU (Pentiu-
mIII 1.26G, memory 1024M). While Original bign

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

tim
e

(s
ec

on
d)

input size

original
HYLO

optimized

Fig. 6: Time Complexity of Function bign

is asymptotically proportional to the square of the
input size, optimized one fastbign is linear. HYLO
is an automatic fusion system, which eliminates un-
necessary intermediate data structures [3]. Func-
tion bign is not optimized by fusion, but it needs
to be applied to by tupling transformation. Our
programmed program transformation optimized it,
where HYLO does not contribute the efficiency.

日本ソフトウェア科学会第 21回大会（2004年度）論文集 5

module Tupling where

import Prelude hiding (sum)

import ProgramTransformation

import Bign

tupling laws [| \x -> ($f x,$g x) |] = do

[| $ef |] <=== laws [| $f [] |]

[| \a x -> $oplus a ($f x, $g x) |] <=== laws [| \a x -> $f (a:x) |]

[| $eg |] <=== laws [| $g [] |]

[| \a x -> $otimes a ($f x, $g x) |] <=== laws [| \a x -> $g (a:x) |]

ret [| foldr (\y z -> ($oplus y z,$otimes y z)) ($ef,$eg) |]

Fig. 5: Transformation Rule

4 Conclusion

We present a monadic combinator library for
specifying program transformations. The transfor-
mations are done at compile time using the mech-
anism of Template Haskell. The advantage of the
library are abstraction and modularity by higher-
order matching and monadic programming.

This library is in the framework of Calculation
Carrying Program [6], in which user writes clear
specification together with calculation specifying
the intension of how to manipulate programs to be
efficient. Our library is the realization of CCP em-
bedded in generic purpose programming language.

References

[1] The glasgow haskell compiler.
http://www.haskell.org/ghc.

[2] Zhenjiang Hu, Hideya Iwasaki, Masato Takeichi,
and Akihiko Takano. Tupling calculation elim-
inates multiple data traversals. In Proceedings
of the 2nd ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP’97), pages
164–175, Amsterdam, The Netherlands, June 1997.
ACM Press.

[3] Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi. A
calculational fusion system HYLO. In IFIP TC
2 Working Conference on Algorithmic Languages
and Calculi, pages 76–106, Le Bischenberg, France,
February 1997. Chapman&Hall.

[4] Simon L. Peyton Jones, Andrew Tolmach, and Tony
Hoare. Playing by the rules: rewriting as a practical

optimisation technique in ghc. In Haskell Workshop,
2001.

[5] Tim Sheard and Simon L. Peyton Jones. Template
metaprogramming for Haskell. In Haskell Work-
shop, pages 1–16, Pittsburgh, Pennsylvania, May
2002.

[6] Masato Takeichi and Zhenjiang Hu. Calculation car-
rying programs: How to code program transforma-
tions (invited paper). In International Sumposium
on Principles of Software Evolution (ISPSE 2000),
Kanazawa, Japan, November 2000. IEEE Press.

[7] Tetsuo Yokoyama, Zhenjiang Hu, and Masato Take-
ichi. Deterministic higher-order patterns in program
transformation. LNCS 3018, 2004.

