ooooboobooobogob 210b002004000000 1

Calculating Tree Nodes Instead of Table Cells*

-Programming Structured Documents with Generic Functions

Dongxi Liu, Yasushi Hayashi, Zhenjiang Hu, Masato Takeichi

Graduate School of Information Science and Technology, University of Tokyo

{1liu,hayashi,hu,takeichi}@mist.i.u-tokyo.ac.jp

TreeCalc is an interactive calculator based on tree nodes instead of table cells.

One of its main

features is to support higher order generic functions, which provide a powerful and convenient way

to define new computations. In this paper, we illustrate the implementation of generic functions for

structured documents, explain novel features for calculating tree nodes and demonstrate the ability of

TreeCalc by implementing Excel applications in TreeCalc. Calculating tree nodes allows partially eval-

uated functions and structured values as computation results of nodes, which is contrast to calculating

table cells.

1 Introduction

A spreadsheet, like Microsoft Excel [7] and Visi-
Calc [8], is a program calculating on table cells.
In a spreadsheet, the user can specify the cell con-
tent by writing formulae, which computes the cell
value from other cells and thus maintain depen-
dency among them. It is a widely used computer
application. However, with the rapidly prolifer-
ation of Web services, the structured documents,
like XML documents [1], have become the main
data type exchanged in the Internet and these doc-
uments have tree structures. The calculation on
table cells cannot process this kind of data because
when representing them as two dimensional tables
some structural information has to be dropped. In
fact, table is just a special case of tree, not true vice
versa.

In this paper, we define calculation on tree struc-
tured data and explain its features and advantages.
Although XML is the widely accepted standard for-
mat of structured data, it cannot be used straight-
forwardly in our work because the data in XML
documents can only contain the first order values.
The expected structured documents for our purpose

are Programmable Structured Documents (PSD)

*This project is supported by the Comprehensive Devel-
opment of e-Society Foundation Software program of the
Ministry of Education, Culture, Sports, Science and Tech-
nology, Japan.

: ‘
o PSD !

Editing | > I

| Tesut |

User | esu i

TreeCalc

Figure 1: Framework of TreeCalc

[2], which are functional extensions of XML doc-
uments. PSD regards computation as the first class
value, and supports self-reference, that is, the nodes
can refer to the documents being defined.

Under the framework of PSD, we develop the no-
tion of calculating tree nodes as a tool TreeCalc.
TreeCalc includes a built-in higher order generic
function named treefold, by which other func-
tions on structured documents can be easily defined.
In TreeCalc, the computations in nodes can return
structured values or partially evaluated functions,
while in spreadsheet, only basic values can be re-
turned. In addition, we demonstrate TreeCalc can
achieve the core functions of Excel by porting Ex-
cel application into TreeCalc, and moreover, it can
implement some functions more easily than those

implemented using VBA in Excel.

2 Framework of TreeCalc

TreeCalc is an interactive calculator of calculat-

ing tree nodes. Figure 1 shows its framework. The

ooooboobooobogob 210b002004000000 2

student

student

g=13 f4 5

Tom fo 1 2 Peter
(math) (arts > (spons)
7.8 9.2 5.3 82

0 = treemap f */teaching/students/student[0]/scores’

(marh) (arts > (sports)

]

78 90

where f = (\(x::Integer) -> if x > 80 then "Excellent" else if x > 60 then "Good" else "Bad")

f1 = treesum "fteaching/students/student[0]/scores’

f2 = treeavr "/fteaching/students/student[0]/scores’

13 = treefold’ “/teaching/students/student[1]/scores™ (\t ->\ -> sum I) id

fd=gid
f6 = treemax "/teaching/students/*/total

5 = div (g id) (g (\(x::Integer) -> 1))
{7 = treemax " fteaching/students/*/avr’

Figure 2: Students Scores

front end is an XML editor Fungus and the back
end is an evaluator. The editor generates PSD and
sends it to the evaluator, where the PSD is evalu-
ated as a program. After that, the result is returned
to the editor to display. At present, the evaluator
is a Haskell interpreter. So from the users perspec-
tive, a PSD is an extended XML file, while for the
implementer of TreeCalc, it is a Haskell program.
In TreeCalc, a user can edit not only ordinary text
Writ-

ing computation expressions includes two aspects,

values, but also computation expressions.

choosing appropriate functions and specifying the
arguments for them. The functions are either built-
in or user-defined functions. The latter ask users
to write Haskell programs based on data structure
from HaXML[4], and we don’t talk more about this
since this paper will focus on built-in generic func-
tions. Omn the other hand, the interesting func-
tion arguments are path expressions, by which the
nodes in documents can be referred and then de-
pendency relation among nodes can be represented.
The paths are a subset of standard XPath [9] ex-

pressions, the syntax of which is as follows:

Path ::= /Nodel/ Node2/.../Noden
Node :: = Tag | * | Tagln]

where each Tag is a string for the name of the
node. And now only absolute paths are supported.
A TreeCalc example is shown in Figure 2. In
the example, we are interested in the nodes con-
taining computations. Some of the computations
treemax

the

have obvious meaning, for example,

‘/teaching/students/*/math’, computes
maximal math score of all students; others are a

little complex and will be explained later.

3 Calculating Tree Nodes

Calculating tree nodes means that in a tree some
nodes contain computations that always depend on
the contents of other nodes. TreeCalc is for demon-
strating this concept. In TreeCalc, users can de-
fine computations by higher order generic functions,
generic in the sense that they can be applied to any
well-formed XML documents. These computations
can return basic values, structured values or par-
tially evaluated functions, among which the last two

kinds are distinct for our work.

3.1 Higher Order Generic Functions

At present, TreeCalc includes only one primitive

generic function treefold and other generic func-

ooooboobooobogob 210b002004000000 3

tions can be defined on it. The underlying data

structure (simplified) [4] is as follows:

data Element
data Content

Elem String [Content]
CElem Element
|CString CString

It is not hard to define the fold function on the
above data structure, but the difficulty is that the
inconsistency between the ways of treating the data
in XML documents by the user and the TreeCalc’s
internal data structure. From the TreeCalc’s editor,
the user can edit strings and integers, for example
the students’ names and their scores, respectively.
However, in this data structure, every data has type
string (XML schema has more rich basic type [10],
but TreeCalc does not supports it so far). Our prin-
ciple to solve this problem is that if users want to
deal with data of type integer, then digit strings
are converted to integers at run time and character
strings are ignored. On the other hand, if char-
acter strings are concerned, then digit strings are
dropped. In order to know what data type is being
considered, we design type class View, in which the
method getVal returns the value with appropriate
type as well as the instance type, that is, the con-
cerned type by users. The definition of View class

and its two instances are as follows:

class View a where

getVal :: String -> (a, String)
instance View Integer where

getVal str = ((read str)::Integer, "Integer")
instance View String where

getVal str =(str, "String")

Now, we can define treefold function as in Fig-
ure 3, which abstracts the pattern of recursive op-
erations for processing XML documents.

The function treefold has a very similar seman-
tics as the fold function on rose trees, like that
in textbook [11]. The difference is that treefold
can selectively deal with the data in an input tree.
Given a function elm of type String -> [b] -> c,
a function celm of type ¢ -> b and a function 1f
of type a -> b, the function treefold elm celm
1f will take as argument an element and return a
value of type c by replacing the Elem constructor

with elm, the CElem constructor with celm and for

the CString constructor, if a has type Integer and
it happens to contain a digit string (judged by pred-
icate isDig), then replacing CString with 1f, oth-
erwise ignoring it, in this case it contributes nothing
to the final outcome; similar processing if a has type
String.

Using treefold we can define other generic func-
tions. For instance, Figure 4 gives some arithmetic
operations based on treefold, which are helpful to

write arithmetic formulae on structured documents.

3.2 Returning Structured Values

Computations in tree nodes can return structured
values, while Excel formulae can only return basic
ones. The usefulness of returning structured value
can be illustrated by treemap, which is widely used
in TreeCalc applications. treemap selectively ap-
plies a function to some leaves of the document

without changing the structure of the documents.

(View a, View b, Show b) => (a -> b)
-> Element -> Element
treemap f = treefold Elem CElem (CString . show . f)

treemap ::

We can see that treemap is defined by treefold.
The argument £ has type a -> b, where a is an in-
stances of View class, so treemap can process sep-
arately the digit strings or the character strings in
documents according to a. In Figure 2, node grade
uses treemap to convert each integer score into one
of “Excellent”, “Good” and “Bad” and generate a
new score tree.

Besides using treemap, users can also define op-
erations that returns a newly constructed structure.
For example, when computing the table of contents
for an article from its body, the structure of table
of contents is constructed dynamically and different

from the structure of article body.

3.3 Partially Evaluated Functions

In TreeCalc, the value of a node can be a partially
evaluated function, by which the users can share
some static inputs of higher order functions. When
programming structured documents, it is very usual

to do several different operations on the same nodes.

ooooboobooobogob 210b002004000000 4

treefold ::
treefold elm celm 1f (Elem title contents) =
where opt (CElem e) = (celm .

elm title ((map opt .
treefold elm celm 1f) e

(View a) => (String -> [b] -> ¢) -> (¢ -> b) -> (a -> b)-> Element -> ¢

filter choose) contents)

opt (CString str) = let (v, _) = (getVal str) in 1f v

choose (CElem e) = True

choose (CString str) = let (v, a) = (getVal str) in let _ = 1f v in
if a == "Integer" && isDig(str) then True
else if a == "String" && not(isDig str) then True else False

Figure 3: Definition of treefold

treefold (\t -> \1 -> sum 1) (id) (id::Integer->Integer)

treefold (\t -> \1 -> foldrl max 1) (id) (id::Integer->Integer)

treesum :: Element -> Integer

treesum =

treemax :: Element -> Integer

treemax =

treecount :: (Integer -> Bool) -> Element -> Integer

treecount p = treefold (\t -> \1 -> sum 1) (id) (\x -> if p x then 1 else 0)

treeavr ::
treeavr e =

Element -> Integer

div (treesum e) (treecount (\x -> True) e)

Figure 4: Arithmetic operations defined by treefold

For example, in Figure 2, the summation and aver-
age are both done on each student’s scores. How-
ever, treefold has the processed node as its last
argument, so we need to change its arguments or-
der so to be specialized with tree nodes. The new

function is as follows:

treefold’ ::
-> (c =>b) > (a->b) > c

treefold’ e elm celm 1f = treefold elm celm 1f e

In order to sum and average the scores for student
Peter, we first define a partially evaluated function
as follows. We give this function name g, so as to

refer to it conveniently.

g = treefold’ ‘/teaching/students/student[1]/scores’
(\t => \1 -> sum 1) id

Next, the summation and average can be gotten
by applying g to their particular additional argu-
ments, respectively.

g id
div (g id) (g (\(x::Integer) -> 1))

These codes can be found under the node of stu-

dent Peter in Figure 2.

4 Excel in TreeCalc

TreeCalc can implement the core functions of Ex-

cel. We demonstrate this by giving a procedure to

(View a) => Element ->(String -> [b] -> c)

excel.xls

<> A B C D E F
1 'name math arts sports total avr
2 Tom 78 92 53 223 74
3 Peter g2 78 a0 250 83
4

5 max 250 83

» » | Sheetl | Sheet?2 | Sheetd [

Figure 5: Students scores in Excel

port Excel applications into TreeCalc. This work
includes two steps: transform tables into trees and
change the formulae accordingly. After transform-
ing a table, changing formulae is direct, so we only
introduce the first step using a particular example.
This example is shown in Figure 5, the Excel ver-
sion of that in Figure 2. The formulae in cell E2 is
“=sum(B2:D2)”, similar to F2, E3, F3, E5, F5.
We can transform this table into a tree by the

following steps:

1) Determine the root. By the purpose of the
example, we can tag the root with teaching.

The

rows (except the row of titles) can be divided into

2) Determine the children of teaching.
two groups: two rows about students and a row

about the maximal scores. So its children can be

ooooboobooobogob 210b002004000000 5

students and max.

3) Determine the children of students. Obvi-
ously, its children include each student.

4) Determine the children for each student. Ac-
cording to the kinds of columns, its children can be
name, scores, total and average. And scores
has children math, arts and sports.

5) Node max will have two children tmax and amax
for maximum of summation and average of each
student’s scores.

After this procedure, we get the tree structure
In addition,

TreeCalc can do some work more easily. For ex-

almost same as that in Figure 2.

ample, to sum the discounted prices of goods in
a document, we can simply compose treesum and
treemap, but in Excel this have to be implemented

by turning to Visual Basic for Applications (VBA).

5 Related Work
TreeCalc has been introduced in [2]. This paper

is a continuing work of [2] with two improvements.
The first is to give TreeCalc a clear user interface
like the description in Section 2, so even the users
who know nothing about PSD and the implementa-
tion of TreeCalc can use it as a calculator to define
their practical applications. The second is to sup-
port higher order generic functions, which makes
the programming easier. For example, the function
to compute the table of contents in [2] can now be
implemented more easily using treefold.

There are other works to implement spreadsheets
using functional language, such as [5], but they still
use table cells as computation model. In [3], the
authors propose a method to let users define func-
tions in Excel, while still not on tree data model.
Proxima[6] supports functions on structured doc-
uments, but it seems that only simple arithmetic

functions on basic values can be defined.

6 Conclusion

In this paper, we have described TreeCalc to
demonstrate calculating tree nodes. It can be seen
that calculating tree nodes is more flexible and gen-

eral, so TreeCalc can implement the core functions

With the

help of higher order generic functions, programming

of Excel and do works Excel cannot.

structured documents in TreeCalc becomes much
easier, and the end users can use it even without
the knowledge of Haskell language. TreeCalc is still
under developing. The problems we are consider-
ing include, for example, implementing upward or

downward accumulations on trees.

Acknowledgment

Thanks Shingo Nishioka, Shin-Cheng Mu,
Keisuke Nakano, Kazuhiko Kakehi and Tetsuo
Yokoyama for many discussions and comments.
This work has been done under collaboration

between University of Tokyo and Justsystem

Corporation.

References

[1] T. Bray, J. Paoli and C. Sperberg-McQueen.
Extensible Markup Language (XML).

http://www.3c.org/TR/1998/.

[2] M. Takeichi, et. al. TreeCalc : towards pro-
grammable structured documents. In Proceedings of
JSSST, 2003.

[3] S.P. Jones, A. Blackwell and M. Burnett. A user-
centered to functions in Excell. In Proceedings of the
ACM International Conference on Functional Pro-
grammang, 2003.

[4] M. Wallace and C. Runciman. Haskell and XML:
generic combinators or type-based translation?. In
Proceedings of the ACM International Conference
on Functional Programming, 1999.

[5] W. de Hoon, L. Rutten and M. van Eekelon. Imple-
menting a functional spreadsheet in Clean. Journal
of Functional Programming, 5(3):383-414, 1995.

[6] M. Schrage and J. Jeuring. Proxima: a
generic presentation-oriented =~ XML editor.
http://www.cs.uu.nl/research/projects/proxima.

[7] Microsoft. Excel. http://www.microsoft.com/excel.

[8] D. Bricklin and B. Frankston. VisiCalc.
http://danbricklin.com/visicalc.htm.

[9] W3C. XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath.html.

[10] J. Simeon and P. Wadler. The essence of XML. In
Proceedings of the 30th ACM symposium on Prin-
ciples of programming languages, 2003.

[11] R. Bird. Introduction to Functional Programming
Using Haskell. Prentice Hall, 1998.

