An Environment for Maintaining Computation Dependency
in XML Documents

Dongxi Liu
University of Tokyo
Tokyo, Japan

liu@mist.i.u-tokyo.ac.jp

ABSTRACT

In the domain of XML authoring, there have been many
tools to help users to edit XML documents. These tools
make it easier to produce complex documents by using such
technologies as syntax-directed or presentation-oriented edit-
ing, etc. However, when an XML document contains data
with some computation dependency among them, these tools
cannot free users from the burden of maintaining this depen-
dency relationship. By computation dependency, we mean
that some data are gotten by computing from other data in
the same document.

In this paper, we present an environment for authoring
XML document, in which users can express the data depen-
dency relationship in one document explicitly rather than
implicitly in their minds. Under this environment, the de-
pendent parts of the document are represented as expres-
sions, which in turn can be evaluated to generate the de-
pendent data. Therefore, users need not to compute the
dependent data first and then input them manually, as re-
quired by the current authoring tools.

Categories and Subject Descriptors

D.1.1 [Programming Techniques|: Applicative (Func-
tional) Programming; H.4.1 [Information Systems Ap-
plication]: Office Automation—spreadsheet, word process-
mng

General Terms

Documentation, Languages

Keywords

Computation Dependency, Functional Programming, Lazy
Evaluation, Programmable Structured Document, XML

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

Zhenjiang Hu
University of Tokyo
Tokyo, Japan

hu@mist.i.u-tokyo.ac.jp

Masato Takeichi
University of Tokyo
Tokyo, Japan

takeichi@mist.i.u-
tokyo.ac.jp

1. INTRODUCTION

XML is a popular format for data exchange in information
systems. With this standard representation, a large number
of XML documents are created and used in many different
areas, like web service, e-commerce and databases. In or-
der to facilitate the development of XML documents, many
authoring technologies or tools, either in academic or in in-
dustry, are proposed. These technologies or tools improve
authoring efficiency from several aspects. First, graphical
interfaces are always provided by commercial tools, such as
XMLSpy[3] and <oXygen/> XML Editor [18], which give
many useful features to ease the work of editing. For ex-
ample, editing operations can be selected from menus, and
different kinds of document constructs are highlighted with
different colors. Second, syntax-directed technology, either
by analyzing schema [3, 18] or mining sample documents
[6], is able to advise the possible elements or attributes un-
der the current context, which helps users to focus more on
contents than on document structures. Third, presentation-
oriented technologies allow users to edit on appropriate doc-
ument views in the WYSIWYG manner and the underlying
XML documents are generated or updated automatically,
which is used in tools such as XEditor [9], XMLSpy [3] and
XMLmind [13].

Though these technologies and tools are useful, they can-
not capture the computation dependency relationship among
different parts of one document. Here, computation depen-
dency means that some parts of the document should be
computed from other parts of the same document. When
using the current editors to create such kind of XML docu-
ments, the user has to keep in his mind this relationship, and
updates the dependent parts manually when depended ones
are modified. This case can be motivated by the following
simple example.

Consider an XML file, shown in Figure 1, containing the
data about a class. This class includes three students, and
each student takes two courses. The average score of each
student depends on the scores of the courses taken by him.
This file also contains the information of how many students
in this class and the number of students who have qualified
average scores (greater than 60 in this example). The former
is gotten by counting the number of student elements, and
the latter depends on the number of average elements with

not made or distributed for profit or commercial advantage and that copies values greater than 60.

bear this notice and the full citation on the first page. To copy otherwise, to

When creating this kind of document with current XML

republish, to post on servers or to redistribute to lists, requires prior specific editors, the users have to compute the dependent values by

permission and/or a fee.
DocEng’05,November 2—4, 2005, Bristol, United Kingdom.
Copyright 2005 ACM 1-59593-240-2/05/00115.00.

themselves in some ways external to the editors. For ex-
ample, if the file is simple, they can do it in their minds;

<class>
<students>
<student>
<name>Tom</name>
<courses>
<science>81</science><art>87<art>
</courses>
<average>84</average>
</student>
<student>
<name>Peter</name>
<courses>
<science>48</science><art>70<art>
</courses>
<average>59</average>
</student>
<student>
<name>Peter</name>
<courses>
92<art>86<art>
</courses>
<average>88</average>
</student>
</students>
<total_students>3</total_students>
<qualified_students>2</qualified_students>
</class>

Figure 1: Computation Dependency in Document

otherwise, they have to write programs in XML oriented
languages, such as Java [17] or CDuce [4], to compute de-
pendent values. Obviously, these are boring and error-prone
procedures for interactive authoring of XML documents.

In this paper, we propose a new environment for author-
ing XML documents, which not only supports explicit and
concise specification of dependent relationship among tree
nodes, but also efficiently solves the dependency to keep
content consistency. The main contributions of the paper
can be summarized as follows.

o A simple user interface for specifying dependency. Our
environment provides a simple user interface, enabling
users even with little knowledge of XML to describe
data dependency among nodes in XML documents eas-
ily. Being analogous to the popular speadsheet appli-
cations like Microsoft Excel, where one can use expres-
sions to code computation of a cell value from other
cells, our environment allows users to write the con-
tents of dependent parts as simple expressions, which
may include XPath expressions to refer to other nodes.
To help writing path expressions, a novel mechanism
is designed to derive XPath expressions automatically
by generalizing or refining the paths of elements chosen
by users.

o XML documents as Programs. When embedded with
expressions, an XML document is no longer a pure
tree-structured data, and rather, it is a complicated
dependency graph, which imposes difficulty in solving
dependency [14]. Different from the traditional ap-
proaches whose focus is on efficient manipulation of
dependency graph, our idea is to consider XML docu-
ment as a program, and dependency solving (semantic
solver) as the process of computing the fixed point of
the program. By the lazy evaluation strategy [10], we
can guarantee that the fixed point of the program can

be obtained in an efficient way if it exists. We shall
refer to such document as Programmable Structured
Document (PSD).

e A functional approach to document manipulation. We
show that the functional language Haskell [5] can be
very useful for document manipulation in general and
for design and implementation of our environment in
particular, which has not been well recognized so far.
First, the expressions in Haskell are concise and pow-
erful for users to describe computation. Second, the
lazy semantics of Haskell programs make them suit-
able to represent PSDs, and an Haskell compiler can
be used by semantic solver to compute fixed points.
Third, higher order functions in Haskell can be used
to introduce new useful functions (for being used in
expressions) to the system without need of other lan-
guages.

The remainder of the paper is organized as follows. Sec-
tion 2 explains PSD, an extension of XML documents with
computation. Section 3 gives an overview of the framework
of our environment. Section 4 presents the way of resolving
the semantics of PSDs. Section 5 provides two supporting
mechanisms for this environment. Section 6 discusses some
scaling issues. Related work and conclusions are given in
Sections 7 and 8, respectively.

2. PSD: AN XMLDOCUMENTWITH COM-
PUTATION

In this section, we explain PSD (programmable structured
document), an extension of XML documents with computa-
tion for representing dependency relationship. We associate
the elements that contain dependent values with a special
attribute called code showing how the dependent values are
generated. To distinguish the code attribute used as a PSD
keyword, we should qualify it with a specific namespace,
while we leave it out here for the ease of presentation. A
dependent element is represented in the form of

<tag code = “expression” [>

where element tag has empty content. An expression may
be any Haskell expression [5]. For simplicity, we define it to
be a constant value (an integer value or a text string), an
XPath expression that refer to the depended elements of the
current document, or a function applied to its arguments.

expression = constants
| XPath

f expression ... expression

Here the language to describe the path, defined in Figure
2, is a subset of the standard XPath language. This subset
is powerful enough to address any part of a tree-structured
document and suitable for later automatic derivation. Al-
though it cannot select document fragments as accurate as
the full XPath, for example, due to ignoring almost all pred-
icates, this drawback can be compensated by turning to ap-
propriate functions to process the results of path expressions
further, as shown in the third case of expression. A path can
be written in absolute form or relative form. An absolute
path is leaded by a slash /, while a relative path starts with
one or more .. separated by slash /. All path steps are
standard except €, which is used for the following two cases:

XPath := /Steps | Ancestor/Steps
Ancestor = ..|Ancestor/..
Steps = Step | Step/Steps
Step = Tag | Tag[Index] |x*|e¢
Tag == string
Index := integer

Figure 2: Syntax of Supported XPath

<class>
<students>
<student>
<name>Tom</name>
<courses>
<science>81</science><art>87<art>
</courses>
<average code="treeavr ../courses" />
</student>
</students>
<total_students code =
"childrennum /class/students/*" />
<qualified_students code =
"treecount (>=60) /class/students//average" />
</class>

Figure 3: A PSD Example

representing Steps//Steps by Steps/e/Steps, and Steps by
Steps/e.

As a quick example for gaining some intuitiveness, con-
sider the following PSD, where * is a function to multiple
the integers in two elements specified by . ./unitprice and
. ./amount, respectively.

<tomato>
<unitprice>3</unitprice>
<amount>10</amount>
<price code = "../unitprice * ../amount"/>
</tomato>

An evaluation of this PSD is expected to produce the fol-

lowing result.
<tomato>
<unitprice>3</unitprice>
<amount>10</amount>
<price code = "../unitprice * ../amount" >
30
</price>
</tomato>
Note that computation result can be an XML tree again,
which is shown by the following PSD:
<tomato>
<unitprice>3</unitprice>
<amount>10</amount>
<price code =
"elem \"total\" (../unitprice * ../amount)"/>
</tomato>

where elem makes an XML element from a tag name and
an integer content. So computation of the code will yield
<total>30</total> instead of 30 as before.

Recalling the XML file in Figure 1, we can represent it as
a PSD in Figure 3. Three functions treeavr, childrennum
and treecount are used in this example: treeavr takes
an element and returns the average of all integers in it;
childrennum takes an element and returns the number of
its children; treecount takes a predicate (>=60) and an el-
ement, and returns the number of integers in the element

Semantics Solver

Compiler

Figure 4: Architecture of the Environment

that satisfy the predicate. All element arguments for these
functions are specified by XPath expressions, which refer to
the corresponding depended parts.

3. OVERVIEW OF THE ENVIRONMENT

The framework of our environment is depicted in Figure
4. It includes five parts: an editor, a semantics solver, a
compiler, a mechanism for XPath derivation and a library
of predefined functions.

The editor is the interface to edit documents. This en-
vironment has several requirements to such editor. First,
it should be able to recognize the special code attributes
in dependent elements and provide mechanisms to let users
evaluate the embedded expressions. Unlike spreadsheets,
where a dependent value (always a number) is computed
strictly, this environment reifies a dependent element lazily
only after a evaluation procedure is explicitly triggered by
users. The idea behind this design principle is that because a
dependent element probably has complex content structure
and its computation might take some time, so we let the
user own this freedom to decide whether she/he wants this
dependent element is computed. Second, when the value
of an expression is wanted, it can ask the semantics solver
to evaluate this expression in the context of current PSD.
Third, after getting the value of an expression, it can put
the dependent value back in the right place with respect to
the evaluated expression. In our implementation, the editor
is implemented upon xfy [11], a platform for creating and
processing XML applications. Figure 5 displays the above
class example in the xfy editor, where the expression in el-
ement total_students has been evaluated by clicking the
evaluate button beside it. Note that only an element with
code attribute is displayed with evaluate button.

The semantics solver translates PSDs from XML domain
into Haskell program domain forwardly or backwardly. In
ordinary XML documents, all data are basic values. So their
semantics are either simply themselves or gotten by validat-
ing against corresponding schemas. However, for PSDs, we
have to evaluate the inside expressions in order to deter-
mine their meanings. Our approach is to translate PSDs
into Hasekll programs, and then compile and run the pro-
grams, and at last translate the generated programs back

=10l

ﬂiar:file:,.-"l::,.-":-:fy—tp1,.-"bin,.-"plugins,.-"cnm.iusts
File Edit Insert Tool

URL ‘iar:ﬁle:rc:h:fy-tp1.fhinrplugins.fcum.juslsystemﬂ reen‘ -
[5] class

[] students
[o] student

[=] name

Tom
COUrses

[-] average evaluatel

» ’
code = Ttreeavr .. /CDUI'SES

student
student

total_students |} evaluatel

code = “childrenrum /class/students/*”

3
qualified_students evaluate |

| load end jar:file:iC:ixfy-tp1binpluginsicom.justsystem/TreeCalc.jarlic...

Figure 5: A PSD in xfy Editor

into PSDs as the values of the expressions. That is, our ap-
proach uses the semantics of the Haskell programs as that of
PSDs by turning to the well established semantics of Haskell
programming language. The next section will give a detailed
description of semantics solver.

In order to make it easier for users to write expressions,
this environment provides two supporting mechanisms. One
is a library of functions, and the other is a mechanism for
XPath derivation, which can derive a path expression auto-
matically to capture the tree pattern hidden in the elements
clicked by users in the editor.

In the rest of this paper, we will concentrate on showing
how to implement the semantics solver and the two support-
ing mechanisms.

4. SEMANTICS SOLVER

The semantics solver is to resolve the semantics of PSDs,
that is to resolve what XML documents they finally repre-
sent or what they should be evaluated to. In this section,
we present the details of how the semantics solver works.
Our main idea is to map a PSD to a Haskell program and
utilize the lazy evaluation mechanism of Haskell for our se-
mantic solver. More concretely, the semantics solver is built
on the HaXML [20], a collection of utilities to process XML
documents using Haskell.

4.1 Representing PSD as XML Data

For a PSD in XML domain, it is represented by the fol-
lowing data structure, which is borrowed from HaXML [20]
and can be gotten by a simple XML parser.

data Element = Elem String [(String, String)] [Content]
data Content = CString String | CElem Elemment

For data type Element, Elem is the constructor to create

an element from a label, a list of attributes and a list of
contents. In our implementation, except for the code at-
tribute, the editor implicitly inserts attribute main to the
element with code to be evaluated due to its neighboring
evaluate button clicked by users. Data structure Content
has constructor CString to contain a text value and con-
structor CElem to construct a content with a child element.
As an example, element average in Figure 3 is represented
as follows:

Elem "average" [("code", "treeavr ../courses")] []

Note that the expression is represented as a string and
the element content is still empty. To get the semantics of
this element under the current PSD context, the expression
should be lifted one level up from a string to a computable
expression and used as the content of the element. This
cannot be done naively by removing the quotation marks of
the expression and making it as the element content. This
naive way will cause some type errors to be complained due
to wrong content type of the element and wrong argument
type for function treeavr. Moreover, the string XPath ex-
pression cannot be evaluated by Haskell, either.

4.2 Data Structures for PSD as Program

For representing a PSD in program domain, the data type
Element remains the same as above, while data type Content
needs some modifications. First, in the above data structure,
only CString can contain basic data, that is all basic data in
XML files are represented as text strings, which is enough
for PSDs in XML domain, but not for PSDs in program
domain. In program domain, to evaluate expressions, the
basic data should be represented in a correct format. So
we need to add more constructors to contain basic data of
different types. In this work, for simplicity, we just consider
one basic data type Int. Second, an expression probably
returns a list of elements, so we need another constructor
CElems to contain the result of such expression.

Therefore, data structure Content for PSDs in program
domain becomes:

data Content = CInt Int | CString String
| CElem Elemment | CElems [Element]

In this data structure, each constructor can contain either
a basic value or an expression translated from the value of
code attribute. For example, CInt in Figure 8 contains the
expression translated from string “treeavr ../courses”, the
value of the code attribute in element average. Haskell
is a lazy language, so only when the data is really used,
for example by pattern matching, the expression under the
constructor will be evaluated.

4.3 Recursive Feature of PSD

As shown in Figure 3, expressions in a PSD use XPath
expressions to refer to the depended parts, so evaluating
these expressions need to evaluate the used XPath expres-
sions first. The semantics of an XPath expression is always
determined by its evaluating context [7]. So, in order to
evaluate an XPath expression, we need to know its context
element, which is the element the path expression will be ap-
plied to. Actually, all XPath expressions in a PSD implicitly
take this PSD as their context elements (a relative path will
be resolved into an absolute one in program domain, so it
also uses this PSD as its context element). Since a defini-
tion of PSD depends on itself, it is recursive in nature. This

Algorithm tran_elm.
Input: elem - an element in XML domain
path - a list of strings for path steps
indexr - an integer for the position of elem
w.r.t its preceding same name siblings
Output: a string for representing PSD as program

Procedure:
1bl = the label of elem
cnts = the list of contents in elem
atts = the list of attributes in elem
idx0 = if idnder == -1 then ""
else "["++str_of_int(index)++"]1"
pathO = path++[1bl++idx0]

hd = ("Elem \"")++1bl++("\" ")++str_of_list(atts)
if elm has code attribute then

expr = the vale of code attribute

psd = hd++" ["++tran_exp(expr, pathO)++"]"
else

1bls = the label list of elements in cnts

psd = hd++" ["++tran_cnts(cnts, pathO, lbls)++"]"
return psd

Algorithm tran_cnts.
Input: cnts - a list of contents in XML domain
path - as that in algorithm tran_elm
lbls - a string list for element tags in cnts
Output: a string for representing content lists
Procedure:
pos = 0 and result = ""
for each c¢nt in cnts, do
cm = if result == "" then else
if c¢nt is an element content then
cnt has the form CElem elem
pos = pos + 1
1bl is the label of elem
if [bls contains only one 1lbl then index = -1
else
index = the number of 1bl in [bls
before position pos
elem0 = tran_elm(elem, path, index)
result = result++cm++"CElem ("++elemO++")"
else
cnt has the form CString str
if str is a digit string then
strO0 = "CInt "++str

nn n n
s

else
str0 = ("CString \"")++str++("\"")
result = result++cm++str0
end for

return result

Algorithm tran_exp.
Input: expr - a string for an expression

path - as that in algorithm tran_elm
Output: a string for representing expression

Procedure:
ty = the type of expr
if ty == "Int" then constructor = "CInt "
if ty == "String" then constructor = "CString "
if ty == "Element" then constructor = "CElem "
if ty == "[Element]" then constructor = "CElems "

subexpr = divide expr into a list of strings
by white space
newexpr = " "
for each str in subexpr, do
if str is a path expression then

newexpr = newexpr++" "++tran path(str, path)
else
newexpr = newexpr++" "++str
end for

return constructor++"("++newexpr++")"

Figure 6: Algorithms of Forward Translation

feature is implicit when a PSD is in XML domain and made
explicit when in program domain.

Based on the data structure in Section 4.2, a complete
PSD in program domain is represented as a fixed point:

fix self. doc

where self is a variable representing the PSD to be defined,
which is used as the context element for evaluating XPath
expressions in doc. And doc is a data built with the con-
structors of type Element and Content with the use of free
variable self. This fixed point can be gotten by solving the
equation:

self = doc

Fortunately, we do not need to solve it by ourselves. Se-
mantics solver just provides this equation and the remain-
ing work is done by the Haskell compiler. If the equation
has fixed point, then the Haskell evaluator will guarantee to
compute the solution due to its lazy evaluation mechanism
[5, 10].

It should be noted that some equation may not have a
fixed point. Consider the following bad PSD.

Elem "badpsd" [1 [
CElem (Elem "dependent"
[("code", "treesum /badpsd")] [1)]

Evaluating treesum ‘/badpsd’ tries to sum all integers
under element badpsd, which will in turn incur another eval-
uation procedure for this expression due to the semantics of
dependent needs its value. This leads to an infinite loop, so
this PSD has no fixed point. In Section 4.7, we will give a
conservative condition for the existence of fixed points.

4.4 Forward Translation

As said before, semantics solver needs to prepare the equa-
tion for the fixed point. The left-hand side of this equation
is always the variable self, so the main work is to generate
the right side by translating PSD in XML domain.

The algorithms are listed in Figure 6. They generate tar-
get programs that will be compiled (by Haskell compiler)
and run after the current stage, so they are meta programs
[15]. Here, the target programs using data structures in Sec-
tion 4.2 are represented by strings, which will be output as
Haskell source code. In these algorithms, operator ++4 is
used to concatenate two strings or two lists; when including
a quotation mark “or ” in a string, it is escaped by a back-
ward slash; str_of_int and str_of_list convert an integer
and a list of string pairs into strings, respectively.

The main algorithm is tran_elm. The argument path is
a list of strings, each of which is a path step from the root
element to the parent of element elem. The argument index
indicates the ordinal position of element elem with respect
to its preceding same label sibling elements. This algorithm
translates element elem into program domain. If elem con-
tains code attribute, then tran_exp is used to translate the
expression and the result is made as the content of elem;
otherwise, its whole contents are translated by algorithm
tran_cnts. In any case, the path argument is extended with
the label of elem and the ordinal index if it is not -1, which
means that elem has no same name siblings.

Algorithm tran_cnts is to translate a list of contents. Ar-
gument [bls contains a list of labels of all elements in the
content list cnts, which is used to determined the index of

each element. The translation of string content needs some
explanation. If a string consists only of digits, this algorithm
uses constructor CInt to contain it. In target program, it is
an integer since its quotation marks have been removed by
string concatenation. For example, “CInt ”+4 “10” result in
“ClInt 10”. Generally, whether an string is an integer should
be determined by validating against an XML Schema [16],
but we take this way for simplicity.

Algorithm tran_exp translates expression expr from a string
to a type-correct expression recognizable by Haskell com-
piler. It does two main work: one is to choose an appropriate
constructor to contain the translated expression according
to the type of expression expr; the other is to translate path
arguments into HaXML combinators, and thus to be evalu-
ated by Haskell. For the first work, if the expression consists
only of a digit string, then it has type “Int” for the same rea-
son as above; if it is an XPath, then it has type “Element”;
if it applies a function to some arguments, then it has the
same type as the resulting type of the used function; other-
wise, it has type “String”. For example, treeavr has type
Element—Int, which is a function type with Element as the
type for argument and Int as the type for result, so CInt
will be chosen to contain expression treeavr element. To
do the second work, algorithm tran_path is applied to each
path parameter, which will be explained in next section.

4.5 Encoding XPath Expressions

In XML domain, an XPath expression is represented as a
string. To interpret them in Haskell, instead of implement-
ing an interpreter from scratch, we turn to the path combi-
nator in HaXML [20], which can express XPath query. Our
work is to encode XPath expressions with path and other
combinators.

HaXML combinators tag, elm, children, position, mkElem,
multi and path are used to encode XPath expressions. They
are explained informally as follows.

e tag [bl content: if the element in content has label [bl,
then returns list [content], else returns empty content

[-

e elm content: if content contains an element, then re-
turns list [content], else returns empty content [].

e children content: returns the children of the elements
in content as a content list.

e position n combinator content: returns a content list
consisting of the n’th content from the result of apply-
ing combinator to content.

e mkElem label [combinator] content: builds a list con-
taining an element content with tag label and the con-
tent list obtained by applying combinator (singleton
list [combinator] is enough for our purpose) to content.

e multi combinator content: returns a content list ob-
tained by concatenating the result of applying combi-
nator to each descendant in content.

e path combinator_list content: returns a content list
gotten by applying the first combinator in combina-
tor_list to content and the next combinator to each
content generated by its preceding combinator in com-
binator_list.

Algorithms for encoding XPath expressions are listed in
Figure 7. Algorithm tran path encodes XPath expression
pathexp, and the result is put under an extra label “arg”, so
the result is always an element. As discussed in Section 4.3,
variable self is used as the evaluating context of this expres-
sion. Since only self (indicating the whole document) can
be used as the context element, relative path expressions are
needed to be resolved into absolute ones. Before processing,
pathexp is divided into a list of path steps, and if the first
step is an empty string, then it is an absolute path; otherwise
it is a relative path starting with one or more “..”. For ex-
ample, “../courses” is divided into step list [“..”, “courses”],
and if argument path is [“class”, “students”, “student[0]”,
“average”], then the relative path “../courses” will be re-
solved into [“class”, “students”, “student[0]”, “courses”] be-
fore encoded by tran_steps.

Algorithm tran_steps translates each path step into the
corresponding combinator. Empty step “” corresponds to
combinator “multi elm” since it is generated due to expres-
sion “//”; step “*¥” corresponds to combinator “children”
since it does not care element label; step (bl without index
is encoded as “children, tag [bl”, which means that filtering
the child elements with name [bl; step Ibl[index] is trans-
lated into “position index (path [acc, children, tag [bl])”,
which returns the index’th result of the path combinator,
which takes as arguments the accumulated encoding result
of the preceding steps and the combinator for the current

step.
As an example, the expression “/a/b[2]//c[1]/*” is first
changed into the step list [“a”, “b[2]”, ¢, “c[1]”, “#”]. And

then it is processed by tran_steps as the following recur-
sions:

r0: "a" > children, tag "a"

rl: "b[2]" ==> position 2 (path [rO, children, tag "b"])
r2: "" ==> rl, multi elm

r3: "c[1]" ==> position 1 (path [r2, children, tag "c"])
rd: "x" ==> r3, children

Note that tran_steps always inserts the children com-
binator before root element, like that before tag “a”. So a
combinator, mkElem ‘‘doc’’ [elm], is inserted in head by
algorithm tran_path to cancel the effect of this children
combinator.

Now, we have all knowledge to translate a PSD from XML
domain into program domain. For example, PSD in Figure
8 is in Haskell program domain, which is translated from
that in Figure 3 by the algorithms in this section.

4.6 Backward Translation

After getting a PSD in program domain, semantic solver
will extract and return the content of the dependent ele-
ment if it contains the expression users want to evaluate,
which causes the expression to execute due to the evalua-
tion strategy of Haskell. For example, if Elem "average"
[attr] [CInt exp] contains the concerned expression, then
exp will be evaluated and the result is returned.

If the result is just a string or an integer, semantic solver
can return it simply. However, if it is an element or a list of
elements, which probably contains data structures and ex-
pressions in program domain, semantic solver has to trans-
late them back into XML domain. Back translation algo-
rithm traverses the whole resulting element or element list
and processes each node. Below, we mention only some crit-
ical points.

Algorithm tran_path.

Input: pathexp - a string for a path expression
path - as that in algorithm tran_elm

Output: a string for encoding pathexp

Procedure:
stepsO = divide pathexp into a list of strings
by slash ¢/’
if the first string in stepsO is "" then

stepsl = the result of removing the first string
from stepsO
else
n = the number of leading ".." in stepsO
pathO =the result of removing the first n strings
from stepsO
pathl = the result of removing the last n strings
from path
stepsl = pathl++pathO
acc = "mkElem \"doc\" [elm]"
combinator = tran_steps(stepsl, acc)
result = "(Elem \"arg\" (path ["++combinator
++"] (CElem self)))"
return result

Algorithm tran_steps.
Input: steps - a list of strings for path steps
acc - a string for the accumulated encoding result
Output: a string for combinators
Procedure:
if steps is an empty list then
result = acc
else
step = the first string in steps
stepsO = the result of removing the first string

of steps
if step == "" then accl = acc++", multi elm"
if step == "*" then accl = acc++", children"

if step is just a label [bl then
accl = acc++", children, tag \""++1bl++"\""

if step has the form [bl[index] then
res = acc++", children, tag \""++lbl++"\""
accl = "position "++index++ " (path ["

++res++"])"
result = tran_steps(steps0O, accl)
return result

Figure 7: Algorithm of XPath Encoding

self = Elem "class" [] [
CElem (Elem "students" [] [
CElem (Elem "student" []1 [
CElem (Elem "name" [] [CString "Tom"]),
CElem (Elem "courses" [][
CElem (Elem "science" [] [CInt 81]),
CElem (Elem "art" [] [CInt 87]1)]),
CElem (Elem "average" [("code",
"treeavr ../courses")] [
CInt (treeavr (Elem "arg"
(path [mkElem "doc" [elm], position O
(path [children, tag "class", children,
tag "students", children, tag "student"]
), children, tag "courses"](CElem self)
N1,

Figure 8: A PSD as A Program

For the dependent child elements in the result, their con-
tents are not empty because tran_elm puts the translated
expressions here. However, in XML domain, the translated
expressions should be hidden from users. So in backward
translation, the contents of dependent elements in the re-
sult should be removed.

The constructors CString and CElem are also existed in
XML domain, so they remain the same; CElems appears
only in the content of dependent elements, so this kind of
constructor has been removed after removing the content of
the dependent elements; CInt can contain an integer valued
expression under a dependent element or an integer from the
conversion of a digit string. The former case is processed
like CElems, while the latter case needs to replace CInt with
CString and convert the contained integer back into a string.

4.7 Well-Behaved PSD

As introduced in Section 4.3, a PSD is represented as an
equation in program domain, and this equation sometimes
does not have fixed point solution because the evaluated ex-
pression causes infinite loops. Whether this bad thing hap-
pens depends on the behavior of the function used in this
expression and its path arguments. For element “badpsd”
in Section 4.3, if treesum is changed into a constant func-
tion, it then becomes a good PSD. In this section, we give a
conservative condition to avoid such loops.

This condition depends on an extended tree structure for
PSD, defined as follows:

DEFINITION 4.1. A tree structure for a PSD is a triple
(N, E,R), where N is a set of nodes, E and R two sets of
edges, with the following conditions:

1) n € N is an element in the PSD;

2) EC N x N and (n1,n2) € E mean that ny is the parent
element of ne;

3) RC N x N and (n1,n2) € R mean that n1 refers to ny
by XPath expressions.

In order to model an PSD in this structure, we have to
keep each element names distinct in N. One method is to
use XPath expressions to specify elements instead of element
tags. As an example, element “badpsd” has the following
structure:

o, 1}, {(0, D}, {1, 0O,
where 0 = /badpsd 1 = /badpsd/dependent

The following theorem describes whether a PSD includes
expressions that can cause infinite loop evaluations.

THEOREM 4.1. Suppose a PSD is modelled by structure
(N, E, R). If there are no cycles composed by edges in EUR,
then evaluating the expressions in the PSD does not cause
infinite loops.

Note that this condition is conservative since it rules out
some PSDs that do not lead to loop evaluations. Back to
the above example, the edges (0, 1) and (1, 0) make up a
cycle, so it is conservatively regarded as a bad PSD.

5. SUPPORTING MECHANISMS

In this section, we introduce two supporting mechanisms
that make the environment more usable: one is automatic
path derivation and the other is a library of predefined func-
tions.

Steps: & Stepsy — Stepss
/Stepsi @ /Stepsy = /Stepss

€ Steps = Steps

Steps & € —> Steps

if Tagy # Tagp then Tags = * else Tagz = Tag
Tagy @ Tago — Tags

if Tagy # Tagy then Tags = * else Tags = Tagy

Tag: @ Tagy[Index] = Tags

if Tagy # Tagy then Tags = * else Tags = Tagy

Tagi[Index| @ Tags = Tags

if Tag; # Tagy then Tags = *
else if Index1 # Index; then Tagsz = Tag; else Tags[Indexi]

Tagi[Index:]| @ Tagz[Indexy| = Tags

Stepy # * Stepi # € Stepy # ¢
Stepi @ Stepy, = Stepz Steps # *
Steps; D Stepsy — Stepss

Stepi/Stepsi @ Stepy/Stepss = Steps/Stepss

Step; # * Stepy # € Stepy # ¢
Step: @ Stepa = * Stepsi; = Stepsa
Stepsi @ Stepsy = Stepss

Stepi/Stepsi @ Stepy/Stepsy = */Stepss

Stepi # * Stepi # € Stepy # ¢

Step: @ Step, = * Steps; % Stepsy

let m = length(Step:/Stepsi) and n = length(Steps/Stepss)

if 31, j.sub(Step1/Stepsi, i,m) ~ sub(Stepy/Stepsz, j,n)

then Stepss = ¢/sub(Step;/Stepsy, i,m) @ sub(Steps/Stepsz, j,n)
else Stepss = Stepy/Steps:

Stepi/Stepsi @ Stepz/Stepsy = Stepss

Stepy # € Stepsi @ Stepsy = Stepss

*/Stepsi @ Stepy/Stepss = */Stepss

Steps # € let n = length(Stepss)

if 31, j.Steps: &~ sub(Stepsy, i, j)

then Stepss = €¢/Stepsy @ sub(Stepss, i,n)
else Stepsz = Stepsy

€/Steps; @ Stepsy = Stepss

Figure 9: Rules for XPath Fusion

Figure 10: An Example Tree

5.1 Automatic Path Derivation

When inputting an expression, users always need to write
XPath expressions to refer to the depended document frag-
ments. In our environment, this work can be done auto-
matically. When users click on some interested elements, an
XPath expression that generalizes or refines the path infor-
mation of these elements will be generated by path deriva-
tion mechanism.

This mechanism works like this: the user clicks on the
first interested element, and the mechanism returns a path
for this element (the Editor is required to provide the path
for the selected element, which consists of only step tag
or tag with index since it is for a specific element); and
then clicking another element, and at this time instead of
returning the path for the second element, the mechanism
fuses the first element’s path with that of the second ele-
ment and returns a path that is either more generalized to
cover these two elements (in horizontal direction) or more
refined by extending the the first path (in vertical direction).
For example, on the tree in Figure 10 (also used in later ex-
ample), path /a/c/d is more generalized than /a/c[0]/d
and /a//c/d is more refined than /a//c. In general, this
mechanism is to fuse a generalized path for history selected
elements and that of a newly selected one, and return a more
generalized or refined XPath expression.

In this paper, we only introduce how to generate absolute
paths. It is easy to translate an absolute path to a relative
path by removing some of its leading steps and then adding
some .. steps. Our focus here is to design fusion opera-
tions, shown in Figure 9, to generate all used path steps in
a reasonable fashion. Each operation is defined by a rule
with one or more premises above the horizontal line and
one conclusion under the line. The judgment has the form
Steps; @ Steps; = Stepss, where & indicates the fusion
operation, with arguments Steps; the path steps for history
selected elements and Steps, the path steps for the newly
selected element; Stepss is the fusion result, which is a more
generalized or refined path.

The first rule fuses two absolute paths, and the result
is still an absolute path with steps fused from Steps; and
Steps,. The second and the third rule deal with the case
where one path is ended while the other not, and they return
the remaining steps of the longer path.

The next four rules are used to fuse two tags with or
without indices. If the two tags are different, then they
are generalized to step *, and whether this generalization is
valid depends on their following steps, as processed in the
ninth and the tenth rules; if the tags are same but with
different indices (if they have), then indices are ignored and
tag is kept as the generalized step, which is always valid in
this mechanism. For example, if user first clicks on node
/a/c[0], and then /a/c[1], the generalized path is /a/c,
that is all nodes ¢ under a are covered; and for another
example that also uses the third rule, node /a/c[0]/d4 and
/a/c[1] are generalized to /a/c/d.

The following three rules deal with the case where Step;
and Step, are tag or tag with index, not * or €. The eighth
rule is simple, in which Step; and Step, have valid gener-
alized step, so it is put in front of the fusion result of the
remaining steps. This rule can generate * at last step. For

example, paths a/c[0]/d and a/c[1]/e are fused as a/c/*.
In the ninth rule, Step; and Step, are fused as a step *
that is valid under the condition Steps; ~ Steps,, which is

defined below. This rule can generate * at the intermediate
or last step. As an example, paths a/b/e and a/c[0]/e are
fused as a/*/e.

€ €

Tag ~ Tag
Tag[Index] =~ Tag
Tag =~ Tag[Index]
Tag[Index;] = Tag[Index;]
Tag[Indexs] =~ Tag[Indexi]
Stepi/Steps:i = Stepy/Steps; where Step; & Step>

and Stepsi X Stepsy

Some of the remaining rules depend on two auxiliary func-
tions: length(Steps) and sub(Steps,i,j). Informally, the
former returns the numbers of steps in Steps without con-
sidering all € in the end, and the latter returns the sub-steps
between ¢ and j in Steps with 1< i < j < length(Steps).

The tenth rule takes place when condition Steps; ~ Steps,
in the ninth rule does not hold. This rule checks whether
Step:/Steps; and Step,/Steps, have tail steps that are
equivalent. If yes, a € is put in front of the fusion result of
their tail steps; otherwise, only the path steps of the newly
selected element are returned. That is, when no reason-
able generalized steps are available, the path steps of the
current element are kept and that for history elements are
abandoned. By this design choice, the mechanism always
responds a path to user’s actions. This rule can generate
“//” in paths. For example, if the user first chooses node
a/b/c/d, and then a/f/g/d, he can get the generalized path
a/e/d (or a//d); however, if the second choice is node a/£/g,
then only a/f/g is returned.

The eleventh rule deals with the case where the path steps
for history elements start with *. * is surely more general
than Step, since it is either a tag or a tag with index, there-
fore fusion of them returns in *. This rule can help to con-
struct paths with many * steps. For example, if the user
clicks on four elements a/b, a/f, a/b/c[1]1/d and a/f/g/d
sequentially, then the generalized paths a/*, a/*/c/d and
a/*/*/d are produced correspondingly.

The last step is applied when meeting with € in the path
steps for history elements. If Steps, has sub-steps that is
equivalent to Stepsi, then this sub-steps with the remain-
ing steps in Steps, will be fused with Steps; as the new
refined steps; otherwise, there is no reasonable refined steps,
S0 Steps, replaces €/Steps; as a response to the user. This
rule can refine paths that include “//”. For example, paths
a/b/c and a/c[1] are fused as a//c, and then fusing a//c
with a/b/c/d will produce a refined path a//c/d.

5.2 Library Functions

This environment provides a library of functions, which
abstract some common operations on XML documents, such
as elements sorting and elements recursive processing. These
functions are helpful to reduce the work of users to develop
PSDs, and particular useful to those who do not know about
programming.

At present, this library includes ten categories of func-
tions: math, text processing, date, searching/sorting, sta-
tistics, finance, information, accumulation, higher order and
auxiliary functions. Below, we just introduce a few impor-

tant library functions.

In higher order functions, treefold encapsulates the re-
cursive processing patterns on trees, like foldr on list [5],
which can be used to define other functions. For example:

treesum elm = treefold (\t -> \1 -> sum 1) (\x -> 0) id elm

treecount p elm = treefold (\t -> \1 -> sum 1) (\x -> 0)
(\x -> if p x then 1 else 0) elm

in which treesum sums all integers under element elm, and
treecount has been used in Figure 3; and informally, treefold
can be understood as generating an expression gotten by re-
placing constructor Elem in argument elm with its first ar-
gument, CString with its second argument, CInt with its
third argument, CElem and CElems with identity functions,
and ignoring the attributes of elm.

In searching/sorting functions, treesort elm tag sorts
the children of element elm in a descending manner ac-
cording to the value labelled by tag in each child. For ex-
ample, expression treesort /class/students/* ‘name’’
will sort students according to their names for the docu-
ment in Figure 3. Another interesting function in this cat-
egory is treelookup elm tag; p tagz, which returns ele-
ment tag, in each child of elm if the value of tag; satisfies
predicate p. For example, treelookup /class/students/*
‘‘average’’ (<60) ‘‘name’’ queries the names of the stu-
dents with average scores less than 60.

If the library functions are not enough for users’ applica-
tions, this environment allows to develop their application-
specific functions in a module and then import it into PSDs
by preserved tag <psdfun>import ModuleName< /psdfun>.

6. DISCUSSION OF SCALING ISSUES

In this section, we discuss some scaling issues encountered
when applying PSD technique to large documents. The ba-
sic idea of PSD works well for small documents, such as
the examples in Section 2. For such documents, it takes
about 3 seconds to evaluate an embedded expression on a
PowerBook G4 computer. We also tested some XML files
generated with xmlgen [1] by embedding into them the ex-
pressions to compute the average prices of prodcuts at closed
auctions. The result is that, when the size of the sample
file reaches 60KB, the time for evaluating an expression is
about 30 seconds, which is too long for this interactive en-
vironment.

In these experiments, cimpiling the generated Haskell pro-
grams dominates the whole process of the semantic solver.
Hence, in order to make the semantic solver scalable to large
documents, it is necessary to reduce the sizes of Haskell pro-
grams representing PSDs. Fortunately, this is possible since
in a large PSD, an expression generally needs some parts
of the document for evaluation. For example, in Figure 3,
when computing Tom’s average score, the student elements
for other students are actually not used. Based on this ob-
servation, some of the authors have proposed a techinique to
prune PSDs before outputing them to the semantics solver,
and it is proved effective in [8].

7. RELATED WORK

Our environment maintains the computation dependency
by allowing inserting code in XML documents, which results
in PSDs. The concept of PSD has been demonstrated by
some ad hoc applications in [19]. While in this work, we
give a fundamental and systematic treatment of the syntax
and semantics of PSDs. Moreover, this work also proposes
two supporting mechanisms to help to develop PSDs. In the

following, we introduce some other works that also extend
XML documents with code or script.

Active XML (AXML) documents [2] are the XML doc-
uments, where some parts are given by code that calls to
Web services. Similarly, the semantics of AXML documents
is also dependent on the result of executing embedded code,
but the code is specific for calling Web service. Compared
with Active XML, PSD allows one element to refer to ele-
ments that are in turn computed from other elements in the
same document, which is not allowed by Active XML. More-
over, our environment can be used to author documents that
need to merge data from Web services or other documents
only if the appropriate functions are used.

XEXPR [12] is a scripting language taking XML as its
syntax and can be embedded easily in XML documents.
It defines some preserved tags for such language constructs
as logical and arithmetical operators, loop and conditional
control structures, etc. XEXPR scripts can do many use-
ful computation in documents. However, XEXPR does not
have the mechanism to refer to other parts of the same doc-
uments, so it cannot express the dependency relationship.

8. CONCLUSIONS

We believe that authoring documents with computation
dependency is not a pleasant work in existing tools. In this
paper, we present a new authoring environment to address
this problem. The underlying theory is to extend XML doc-
uments with expressions in a clear and systematic way and
resolve the semantics of this kind of documents by exploiting
the lazy evaluation mechanism of the functional program-
ming language Haskell. In this environment, when meeting
with a dependent value, the user just needs to write an ex-
pression to represent it. Therefore, the content consistency
in this environment can be guaranteed by just checking the
expressions, which is much easier than checking the data di-
rectly for their consistency. By our experiences of using it,
the two supporting mechanisms are quite useful to make it
be accepted by end users.

The technologies proposed in this work are orthogonal to
those used in other XML authoring tools, so this environ-
ment can also be used to enhance the existing tools, such as
XMLSpy, which is a work we are exploring.

9. ACKNOWLEDGMENT

Thanks to the PSD project members in the University of
Tokyo for stimulating discussion on this work. This work
is partially supported by Comprehensive Development of e-
Society Foundation Software Program of the Ministry of Ed-
ucation, Culture, Sports, Science and Technology, Japan.
We are also grateful to the referees for detailed and helpful
comments.

10. REFERENCES

[1] XMark-An XML Benchmark Project.
http://monetdb.cwi.nl/xml/index.html.

[2] S. Abiteboul, O. Benjelloun, and T. Milo. Positive
active XML. In Proceedings of the twenty-third ACM
symposium on Principles of database systems, 2004.

[3] Altova. XMLSpy. via http://www.altova.com.

[4] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an
XML-centric general-purpose language. In Proceedings

[16]

[17]
[18]

[19]

[20]

of the eighth ACM international conference on
Functional programming, 2003.

R. Bird. Introduction to Functional Programming
using Haskell. Prentice Hall, 1999.

B. Chidlovskii. A structural advisor for the XML
document authoring. In ACM Symposium of
Document Engineering, 2003.

P. Geneves and J.-Y. Vion-Dury. XPath formal
semantics and beyond: A cog-based approach. In
International Conference on Theorem Proving in
Higher Order Logics (TPHOLs), Emerging Trends,
2004.

Y. Hayashi, Z. Hu, M. Takeichi, N. Wake, M. Hara,
and N. Oshima. Pruning DOM trees for structured
document processing. In Proceedings of JSSST, 2004.
Z. Hu, S.-C. Mu, and M. Takeichi. A programmable
editor for developing structured documents based on
bidirectional transformations. In Proceedings of the
2004 ACM symposium on Partial evaluation and
semantics-based program manipulation, 2004.

T. Johnsson. Efficient compilation of lazy evaluation.
SIGPLAN Notices, 19(6):58-69, June 1984.
Justsystem. xfy XML Management Architecture. via
http://www.xfytec.com/index.html, 2004.

G. T. Nicol. XEXPR - A Scripting Language for
XML. via http://www.w3.org/TR/2000/NOTE-
xexpr-20001121/.

Pixware. XMLmind. via http://www.xmlmind.com.
B. Ronen, M. A. Palley, and J. Henry C. Lucas.
Spreadsheet analysis and design. Commun. ACM,
32(1):84-93, 1989.

T. Sheard. Accomplishments and research challenges
in meta-programming. In Proceedings of the Workshop
on Semantics, Applications and Implementation of
Program Generation (SAIG’01), volume 2196 of
LNCS, 2001.

J. Simeon and P. Wadler. The essence of XML. In
Proceedings of the 30th ACM symposium on Principles
of programming languages, 2003.

Sun Microsystems. Java Architecture for XML
Binding (JAXB). via http://java.sun.com/xml/jaxb.
SyncRO Soft Ltd. oXygen XML Editor. via
http://www.oxygenxml.com.

M. Takeichi, Z. Hu, K. Kakehi, Y. Hayashi, S.-C. Mu,
and K. Nakano. TreeCalc : towards programmable
structured documents. In Proceedings of JSSST, 2003.
M. Wallace and C. Runciman. Haskell and XML:
Generic combinators or type-based translation? In
Proceedings of the eighth ACM international
conference on Functional programming, 1999.

