ooooboobooobogob 210b002004000000 1

Pruning DOM Trees for Structured Document Processing*

Yasushi Hayashi’ Zhenjiang Hu! Masato Takeichif
Nobuaki Wake!™ Masafumi Hara’™ Norio OshimalT

fGraduate School of Information Science and Technology, University of Tokyo

] ustsystem Corporation

{hayashi,hu,takeichi}@mist.i.u-tokyo.ac.jp

{nobuaki_wake,masafumi hara,norio_ooshima}@justsystem.co.jp

PSD (Programmable Structured Document) is a framework in which structured documents are edited

efficiently and safely by evaluating embedded expressions in themselves. The PSD processing system

we are currently developing requires an external evaluator to get the DOM data of documents held

in the editor. In this work, a method to prune DOM trees is proposed to improve the performance

of document manipulations by avoiding unnecessary data communication between the editor and the

external evaluator. Based on information about references given by the user, it generates a pruned DOM

tree, eliminating unnecessary parts for the evaluation from the original DOM tree. The mechanism of

tree pruning is explained and its efficiency is evaluated using examples.

1 Introduction

XML has been widely adopted as a standard for
describing structured documents. In the conven-
tional way an XML document is written, the ele-
ment values are independent from each other. Intro-
ducing computations in the XML document for ma-
nipulating themselves naturally allows some parts
of a document to be dependent on other parts.
It will enhance its usability, especially these de-
pendencies are essential factors for the document.
In [6], we proposed the concept of Programmable
Structured Documents (PSD), that is, a document
that (1) contains computation: a document is itself
a program; (2) can be manipulated by itself: a doc-
ument becomes a meta program; (3) is reliable and
reusable. For example, in [6], we introduced a PSD
application called TreeCalc, which aims at a tree
version of functional spreadsheet|2], where users can
easily create and delete an XML tree, some of its

subtrees depending on other subtrees.

In the current framework of our PSD system, we
assume that an editor uses DOM [7] to keep XML
data, but the language for embedded code need not

*The project is supported by the Comprehensive Devel-
opment of e-Society Foundation Software of the Ministry of
Education, Culture, Sports, Science and Technology, Japan.

be restricted by this assumption. It could be a lan-
guage that cannot directly deal with XML as DOM
objects. This demand to be language-independent
leads to the structure of a PSD system having an ed-
itor to keep XML documents and an external eval-
uator for evaluating embedded code. For such kind
of systems, having an effective interface from which
the external evaluator can access and manipulate
the documents efficiently and flexibly is critical. For
example, in TreeCalc, we embed Haskell in XML,
and made use of an XML editor/viewer, developed
in Java, which employs a DOM for editing and pre-
sentation. The whole XML document is sent from
the editor to the external evaluator where a Haskell
code is evaluated. The evaluated result is returned
to the editor to be plugged back in the original doc-
ument. However, this process performs unnecessary
data communication when a large part of data need
not be accessed by the evaluator. Especially, when
the system deals with large XML data, this data
communication cost could be a large overhead. To
remedy this drawback, in this work, we introduce
tree pruning in which a system constructs a docu-
ment tree by eliminating unnecessary parts for the
evaluation from the whole document tree before any

document manipulation starts.

ooooboobooobogob 210b002004000000 2

XML Editor with

User operation

1. Referring-element
marking
2. Expression selection

pruned-tree plugin

3. Pruned-tree
construction

PSD evaluator

4. Pruned-tree

evaluation

5. Updating

-

6. Result check I r

Figure 1: Overview of tree pruning

2 Overview of tree pruning

Figure 1 illustrates the process of XML data ma-
nipulation in the proposed system. Firstly, users
give information of references by marking referring
elements. In the current user interface of a viewer,
a user selects an embedded expression and executes
a command to evaluate it. When the command is
executed, the editor constructs a pruned tree, which
will be explained in detail in the following sections,
and then send the pruned tree to an external eval-
uator. The evaluator receives the pruned tree in-
cluding the code, and evaluate it. The evaluated
subtree is sent back to the editor and used to up-
date the original DOM tree. The result is displayed

to the user by the viewer.

3 Pruning DOM trees

The aim of tree pruning is to make the parts of
the document to be sent to the external evaluator
as small as possible. Therefore, we try to keep only
subtrees whose elements may be referred during the
evaluation. From now on, we call them “useful sub-
trees”. To identify the useful subtrees, the system
relies on user’s annotations. If some element in
the source document refers to other elements, it is
marked by users with an attribute “refer-to” in the

form of

<src:element
prt:refer-to="referId(refer-list)">
Contents

</src:element>

where referId is an unique ID for the reference and
refer-1list is a sequence of XPath expressions that
specify elements to be referred. After selecting a
code element and executing a command to evaluate,
the closest ancestor element which has a refer-to at-
tribute is marked as the “start” element. Then the
elements referred by the start element are marked
with information about the reference ID names. If
they, in turn, refer to other elements, those referred
elements are also marked recursively. Circular de-
pendencies can be detected in the recursive pro-
cess. After all referred elements are marked, the
system copies (in the order they appear in the doc-
ument) all elements that are either marked or have a
marked element as its ancestor. The useful subtrees
consists of those copies. A pruned tree has the root
element prt:pruned-tree and includes the useful

subtrees taking the form of:

<prt:pruned-tree>
Contents: (src:element)*

</prt:pruned-tree>

That is, the root element prt:pruned-tree has a
sequence of useful subtrees as its direct children.
When making copies of useful subtrees, the system
records information about reference ID names and
the position in the source document in the root el-

ement of the subtrees in the form of:

<src:element
prt:referred-from=referred-list
prt:original-path=element-expression>
Contents

</src:element>

ooooboobooobogob 210b002004000000 3

itemlist

refer-to="title(/dictionary/entry/title)
number(/dictionary/entry/number)”
00957 || functional [index] [lookupJ [number]
language ‘ ‘
mkSCTL dictionary C52
0 N - [a

Figure 2: DOM tree of CS dictionary

where referred-list is a sequence of reference
ID names. Each of ID names takes the form of
ID[index] where index is an integer to express a
reference order when multiple elements are referred
by one reference. An element-expression is the
position of the referred element in the source docu-
ment, which is expressed as a path expression.
When the

referred-from attribute is

the

im-

editing pruned tree,

particularly
portant because it allows us to identify the referred
Note that path

expressions in the source document cannot be used

elements in the pruned tree.

for this purpose anymore since the tree structure
of the source document is different from that of
the pruned tree. The original-path attribute is
not used in the external evaluator but used in the
editor for locating the returned tree to the original
tree. The referred-from attributes and the original
path attribute are eliminated when the pruned tree

is pluged back into the source document.

4 A concrete example

To illustrate this process more concretely, we use
the XML edition of Iwanami Encyclopedic Dictio-
nary of Computer Science (we call it CS dictionary
for brevity). The dictionary has a root element
dictionary having a sequence of entry elements
as its children, each has children ID, title, body,
tree that gives information about the ID number,
title, and description, and category tree respectively

for the entry. A body element has a number of chil-

dren, including index and lookup, which indicate
that some words in the description have references
in other parts of the dictionary. Figure 2 illustrates
the DOM tree data structure for one entry.

In PSD, users can write expressions in the
XML document. For example, mkSCTL dictionary
"C52" in Figure 2 is a piece of code that automat-
ically generates the list of the titles which belong
to the same category number C52 (for “program-
ming methodology”) in this case. The expression
has been placed after a tree element together with
a new itemlist element as its parent. When it is
evaluated, the resulting list replaces the code. The

user gives

refer-to="title(/dictionary/entry/title)}

number (dictionary/entry/tree/number)"

as an attribute of itemlist element to tell the
system that it refers to all title elements and all
number elements, where “title” and “number” be-
fore the parenthesis are ID names of the references.
After selecting a code and execute a command, the
itemlist element is marked as the “start” element.
Then the referred elements title and number are
marked with information about the reference ID.
As a result, the useful subtrees consists of copies
of the elements that have a title or number
element as their ancestor in the original document.
The pruned tree is the set of useful subtrees as
shown in Figure 3. Note that although the relation
between the title and the number under one

entry seems to be broken, it can be recovered since

ooooboobooobogob 210b002004000000

itemlist title

number

number

refer-to="...” referred-from="...” referred-from="...”
referred-from="...” original-path="...” original-path="...”
original-path="...”
functional
mkSCTL dictionary “C52" | | language C52

Figure 3: Pruned tree

their relative order in the sequence is the same as
the order they appear. When making copies of
the useful subtrees, the first title elements are
assigned attributes referred-from="title[0]"
and original-path="*[1]/*[2]/*[4]/*[1]",
and the

attributes

first number elements are assigned

referred-from="number [0]" and

original-path="*[1]/*[2]/*[7]1/*[1]",

larly with the other elements.

pruned-tree
itemlist

=) (=) (=)

backtrack

simi-

By evaluating the

>

refer-to="...
referred-from="...
original-path="...”

”»

actor model

call by value

Figure 4: Evaluated pruned tree

expression on the pruned tree, the list of titles
whose category number is C52 is generated as
shown in Figure 4. When this resulting pruned
tree is returned, the source document is updated

as shown in Figure 5.

5 Experiments

In our experiments, we use Haskell for writing
embedded codes and its interpreter as the exter-
nal evaluator. A pruned DOM tree in the editor is
transformed into XML and sent to an external pro-

cess where it is further translated into Haskell tree

refer-to="...”

[number] { item] [item]
functional ‘ ‘ ‘
language

| C52 ||actormodel||call by value |

Figure 5: Updated source document

by a macro processor. After the evaluation, the re-
sulting XML pruned tree is sent back to the editor

to be plugged into the source document.

To test its performance, we measure the time to
build pruned tree and to run the external process in
which the pruned tree is sent, edited, and returned.
Then, we compare it with the time to run the ex-
ternal process when the whole tree is sent, edited,
and returned, so that the result shows how much
efficiency has been gained by tree pruning. Figure
6 shows the test result for the evaluation of mkSCTL
dictionary "C52" in the previous section varying
the number of entries up to 280. The plotted line la-
beled “original” shows the runtime when the whole
document tree was sent, while the plotted line la-
beled “pruned” shows the runtime when a pruned
tree was sent. In this example, since the tree prun-
ing avoids sending the text of the body element,
which is the most dominating part in the whole

document, some performance gain is expected. In

ooooboobooobogob 210b002004000000 5

6000

—— original
5000

—#— pruned

pruned+

4000

3000

1000

runtime(ms)

40 80 120 160 200 240 280

number of entries

Figure 6: Comparison of runtimes

fact, the test result shows that the costs of using
the pruned tree methods are less than half of that
of using original method. We got similar results
for other examples in which the most of the texts
in the body element are not be sent. The plotted
line labeled “pruned+” shows the rusult of an addi-
tional experiment that will be explained in the next

section.

6 Discussions and related work

In addition to the experiment in section 5, we
also made an additional experiment using a slightly
different version of the pruned tree in which only
the text nodes that are not included in the useful
subtrees are eliminated, while preserving the whole
tree structure (in this sense, defoliation may be a
better word for it). Its motivation is that this ad-
ditional information is often useful when writing a
code with pattern matching in some languages like
Haskell and CDuce[l]. In this case, since the data
of all tag names is sent to the external evaluator,
the communication cost increases. The significance
of the increase depends on the proportion of the
amount of data about tag names to that of the
whole data. For the example in the previous sec-
tion, its proportion is only about 20%. The run-
times when using this type of pruned tree for the
same example is shown by the plotted line labeled
“pruned+” in Figure 6. They are slightly smaller
than that when using the other type, but the dif-
ference is small. The reason for its better perfor-

mance is due to its smaller costs for constructing

the pruned tree.

Optimization Techniques that process only a nec-
essary part without reading the whole DOM data
are often used in DOM manipulations [4][5]. A char-
acteristics of our technique is that it is used for the
purpose of minimizing communication cost in a set-
ting in which the manipulations are done by an ex-
ternal evaluator. For a similar purpose, our group
is also investigating a different approach called “By-
need DOM” [3] in which the DOM server sends the
necessary data for an external evaluator only when
needed during the evaluation. A comparison of per-
formance characteristics between the two different

techniques will be beneficial.

7 Conclusion

We proposed a new method to avoid unneces-
sary data communication between an XML edi-
tor/viewer and an external evaluator to improve
performance of XML document manipulations in
a PSD processing system. The performance test
shows that a considerable performance gain can be

observed at least for a certain kind of application.

References

[1] V. Benzaken, G. Castagn, and A. Frisch. CDuce:
An XML-Centric General-Purpose Language. In
Proceedings of the 2008 ACM SIGPLAN Inter-
national Conference on Functional Programming.

ACM Press, 2003.

[2] W. A. C. A. J. de Hoon, L. M. W. J. Rutten, and
M. C. J. D. van Eekelen. Implementing a Func-
tional Spreadsheet in Clean. Journal of Functional
Programming, 5(3):383-414, 1995.

[3] S. Nishioka, K. Nakano, Z. Hu, and M. Takeichi. By-
Need Evaluation of Programmable Structured Doc-
uments (in Japanese). In The 21st JSSST Annual
Conference, 2004.

[4] M. L. Noga, S. Schott, and W. Lowe. Lazy XML
Processing. In Proceedings of the 2002 ACM Sympo-
sium on Document Engineering, pages 88-94. ACM
Press, 2002.

[5] ObjectWeb Consortium.
http://xmlc.objectWeb.org/.

[6] M. Takeichi, Z. Hu, K. Kakehi, Y. Hayashi, S.-
C. Mu, and K. Nakano. TreeCalc: Towards Pro-

Enhydra XMLC.

grammable Structured Documents. In The 20th
JSSST Annual Conference, 2003.
[7] W3C. Document Object Model (DOM).

http://www.w3.org/DOM.

