
Configuring Bidirectional Programs with Functions

Masato Takeichi
Department of Mathematical Informatics

School of Information Science and Technology
University of Tokyo

takeichi@mist.i.u-tokyo.ac.jp

August 24, 2009

Abstract

Many issues both in view-updating and
in synchronization have been dealt with
successfully by designing and imple-
menting domain-specific languages with
bidirectional semantics. These still
lack, however, encapsulation mecha-
nisms with which the forward and back-
ward transformations relate to each
other.

We propose in this paper a concept of
bidirectional programming for problems
like view-updating. In bidirectional pro-
gramming, forward and backward trans-
formations are encapsulated in a sin-
gle bidirectional function which is evalu-
ated twice in a program, once in forward
and once in backward direction. The
framework of bidirectional programming
brings about a new approach to view-
updating and synchronization problems
and an efficient and reliable implementa-
tion of bidirectional transformation.

We illustrate the idea of bidirec-
tional programming by bidirectionaliz-
ing a domain-specific library HaXml
for XML processing and demonstrate
the usefulness of bidirectional functions
through the development of a view-
updating system.

1 Introduction

We often encounter the task of main-
taining persistent source data through a
user’s view consisting of partial data ex-
tracted from the source. As well as re-

placement of data items in the source,
insertion of new data items and deletion
of existent entries are considered typi-
cal maintenance operations through the
view. Such kind of task has been inten-
sively studied in the database commu-
nity, and is called view-updating problem.

Recently, the problem of maintaining
the consistency of two pieces of struc-
tured data was brought to our atten-
tion. Synchronization of bookmarks of
Web browsers is an example. In this con-
text, the source and the view comprise a
collateral pair of structured data to be
kept consistent.

Though developed separately, their re-
sults turn out to be similar; the source
data and the view are transformed to
and from each other by a pair of func-
tions with keeping some consistent prop-
erties. The forward and backward
transformations comprise a bidirectional
transformation between the source and
the view. Many issues both in view-
updating and in synchronization have
been dealt with successfully by designing
and implementing domain-specific lan-
guages with bidirectional semantics.

These still lack, however, encapsula-
tion mechanisms with which the forward
and backward transformations relate to
each other. These transformations dis-
cussed so far are considered simply as
components of a pair 〈f>, f<〉 of a for-
ward f> and a backward f< function. It
is common in bidirectional transforma-
tion that the backward transformation
from the modified view to the source re-
quires the original source data as well as

1



the modified view because the view is an
excerpt of the source and may not convey
the complete information on the source.
Hence the source data might be possi-
bly scanned again during the backward
transformation. This is the reason why
we should be asked to solve the ineffi-
ciency of bidirectional transformations.

We propose in this paper a concept
of bidirectional programming for prob-
lems like view-updating. A bidirectional
program behaves like bidirectional trans-
formation except that it takes editing
operation on the view into account as
well as transformations. In a few words,
the bidirectional program takes a source
data as input, transforms it to produce a
view on which operations are performed,
and then it transforms the modified view
back to put a modified source data as
output. In such bidirectional programs,
forward and backward transformations
are encapsulated in a single bidirectional
function. The bidirectional function is a
higher order function which takes a func-
tion over the target view as its argument
and produces a function over the source
data domain.

We first consider the framework of
bidirectional programming, and then
propose an idea of bidirectional func-
tion with concrete implementation in
Haskell. And we exemplify the advan-
tage of our idea for bidirectional trans-
formation through bidirectionalizing the
HaXml library, and finally demonstrate a
bidirectional XML viewer developed for
illustration.

2 Bidirectional pro-
gramming

Suppose we are about to write a pro-
gram which takes a source data as in-
put and produces a target view through
which updating operations for the source
data are performed. In order to reflect
the changes on the view back to the
source, we need another program to be
performed after updating. These pro-
grams, one transforms in forward and the
other in backward direction, comprise a

bidirectional transformation.
If we consider the whole process as

a single bidirectional program, updating
operations on the view should take part
in the program itself as shown in Fig-
ure 1. The operations on the view may
be performed by the user of the view-
updating system who takes part in the
whole process of the program.

Figure 1: Bidirectional program

2.1 Bidirectional programs
with functions

Consider how to construct the bidirec-
tional program with functions. In the
course of evaluation of bidirectional pro-
grams, the update operation might be
taken for some target view t ∈ Tar of
the source data s ∈ Src rather than for
the source itself, and modification on the
view t′ ∈ Tar should be brought back to
the source to produce new source data
s′ ∈ Src.

The forward function f> from the
source to the target view and the back-
ward function f< from the view to the
source behave as if they were inverse
of the other. It is, however, unrealis-
tic to impose such bijective properties
on these functions. In most programs
of this kind the forward function f> pro-
duces the view t = (f> s) consisting only
of interested excerpted information from
the source s. Although this makes the
user manipulate the data easier than
do on the huge source data, we could
not assume that the backward function
f< brings the modification back to the
source solely with the modified view
t′. We should put the assumption that
the backward function takes the original
source s as well as the modified view t′

2



to produce the result s′ = (f< s t′).
Thus, the part of bidirectional trans-

formation of the bidirectional program
is represented by a pair of functions
〈f>, f<〉 of which component functions
have the functionality

f> :: Src → Tar

f< :: Src → Tar → Src

with properties:

• the forward function f> transforms
the source data s into its target view
t:

t = f> s,

and

• the backward function f< takes the
original source data s and the mod-
ified view t′ to bring the change of
the target view back to produce the
modified source s′:

s′ = f< s t′

as shown in Figure 2

Figure 2: Bidirectional transformation

As for the operation on the view, it is
reasonable to represent it by a function
h:

t′ = h t

which is also shown in Figure 2.
Of course, each transformation should

satisfy certain property of bidirectional-
ity. Here, we should notice that the
transformation 〈f>, f<〉 along with h im-
plements a bidirectional program that
we expect from the specification, and
therefore the property is to be stated in
terms of relations between f>, f< and h.

2.2 Bidirectionality

Several definitions of the property of
bidirectionality have been proposed for
characterizing the bidirectional transfor-
mation under consideration. In [16, 9],
the bidirectional property based on the
“Get-Put” and “Put-Get” conditions is
stated as a fundamental one. Here,
“Get” and “Put” correspond to our
f> and f<, and the Put-Get condition
states that f> (f< s t) = t for some s ∈
Src and any t ∈ Tar.

However, if we allow duplication in the
view described in Section 2.3 below, the
Put-Get property is too restrictive and
is not always satisfied. Hence the bidi-
rectionality is defined differently in [12]
which is based on the “Get-Put-Get” and
“Put-Get-Put” conditions.

As a matter of fact, the property of
this kind cannot convey the whole prop-
erties of our interest. They do not re-
fer to the operation on the view, but
only assume that some modification may
be performed to the view. From the
standpoint of our bidirectional program-
ming, the bidirectionality would be a
consequence of the program composed of
a bidirectional transformation 〈f>, f<〉
and an operation function h. Hence, we
do not specify here the property of bidi-
rectionality in general, but do define the
bidirectionality by programming primi-
tives for bidirectional programs. We
might believe that our well-written bidi-
rectional program will in fact behave as
they satisfy certain property which may
be recognized as bidirectional.

In this paper, we will introduce a set of
such basic bidirectional transformations
in Sections 3.1 and 4.2, where we call
them filters from the source data to the
target view. The set of the basics con-
stitutes itself as a domain-specific lan-
guage with well-defined semantics. The
user can understand the meaning of each
transformation and knows what happens
by using it for programming to solve
problems. Programs written in this lan-
guage enjoy the bidirectional property
based on those of their components.

We state here the simplest property of
stability as the minimum requirement of

3



our bidirectional programs.

Stability:
For any s ∈ Src,

f< s (f> s) = s

holds.

The stability condition says that the
source s remains unchanged if no mod-
ification is made in the target view as
shown in Figure 3. This is the most
fundamental condition that any bidirec-
tional transformation 〈f>, f<〉 must sat-
isfy. It is same as the Get-Put condition
described above. Note that the condition
does not refer to h, or does state that
it holds for the case h = id, the iden-
tity function. Hence, the stability condi-
tion is considered as the weakest condi-
tion of our bidirectional programs. We
need more to specify with respect to h.

Figure 3: Stability

As an illustrative example of individ-
ual bidirectionality, consider a bidirec-
tional program xmin which takes a pair
of integers s ∈ Src and gives the mini-
mum of its component values as the view
t ∈ Tar. The operation on the view, that
is, the function h is assumed to change
the value shown in the view with some
integer. What we expect this bidirec-
tional program is to reflect the change
in the view back to the source. For ex-
ample, given the source s = (2, 5) we are
presented t = 2 in the view by evalua-
tion of (f> s). If we change the value
t to t′ = 6 as the evaluation result of
(h t), where h = const 6, a constant func-
tion returning 6 for any argument, in this
case, we expect to have the pair in the
source changed to s′ = (6, 5) by (f< s t′).
This is done in a way that the selected
component as the minimum is replaced
by t′ in place. It would be natural to do
this, but not necessarily. We might have

written a program which put the differ-
ence of the elements as s′ = (1, 5), for ex-
ample. Some property of bidirectionality
proposed so far is satisfied even by this
artificial transformation, and the other is
not. This is why we need to specify the
property of bidirectionality individually
according to the meaning of the trans-
formation.

It is nothing to say that xmin satis-
fies the stability condition. In addition
to this, we can state that this program
should satisfy the following property as
long as we expect xmin to behave as
above.

Bidirectionality of xmin:
Given a pair s = (x, y) ∈ Src,

f< s t′

= (t′, y), if x < y
= (x, t′), otherwise

where t′ = h (f> s)

holds.

2.3 Duplication in bidirec-
tional transformation

So far we have looked into bidirectional
transformation by representing it with
functions. We can compose functions
to build larger functions as usual in
functional programming. This is noth-
ing special to bidirectional program con-
struction compared to functional pro-
gramming.

There is, however, a very useful con-
struction mechanism called duplication
proposed for bidirectional transforma-
tion [17, 18, 11, 19, 12]. This is beyond
the ordinary functional composition and
should be worth mentioning here.

Duplication of some source data may
appear more than twice in the target
view as if their occurrences were in-
stances of the copy of a single item.
These look like copies at least by their
appearances in the view. But in our
bidirectional settings, duplication differs
from copy in that if one of the occur-
rences in the view is modified, the corre-
sponding source data and the other oc-
currences in the view should change ac-
cordingly. In this way, duplication makes

4



its occurrences kept consistent if one of
them is modified.

Let us consider duplication by split-
ting the source to produce the view
composed by two bidirectional transfor-
mation 〈f>, f<〉 and 〈g>, g<〉 as shown
in Figure 4. Both transformations
share the source s and they produce
tf = (f> s) and tg = (g> s) as parts of
the view t = (tf , tg). Suppose that some
updating operation is taken on the part
tf yielding t′f , and tg remains unchanged;
thus, the total view t is changed to
t′ = (t′f , tg). Then, we first bring the
change to the source by f< to produce
the modified source s′ = (f< s t′f ) by the
backward function f<. Although this
makes s′ updated in accordance with the
change in t′f , this change has not yet
propagated to the tg part of the view
t′. In order to keep the view consistent,
we need to perform the forward trans-
formation again to get the view t′′ =
(f> s′, g> s′). Prosessing this way keeps
the duplicated instances consistent in the
whole view.

Figure 4: Duplication by split

Here, we have the bidirectional prop-
erty for this construction.

Bidirectionality of
Duplication-by-Split

For a bidirectional transformation
〈k>, k<〉 which is constructed by
splitting the source s with 〈f>, f<〉
and 〈g>, g<〉, and for any h,

k< s t′

= f< s t′f if t′ = (t′f , g> s)
= g< s t′g if t′ = (f> s, t′g)

where (f> s, g> s) = k> s
t′ = h t

holds.

As the duplication-by-split is widely
used in transformation for XML process-
ing, we should take it into account to
deal with bidirectional transformation.
It would be well understood that this
mechanism could be used in synchroniz-
ing tf and tg by bidirectional transfor-
mation as well.

3 Functions for bidirec-
tional programming

We have examined bidirectional trans-
formation in general with its func-
tional representation. But when we
consider implementation of bidirectional
programs with functions, we should take
full care about the close connection of
forward f> and backward f< functions
of bidirectional transformation 〈f>, f<〉.

A simple way of implementing the
bidirectional transformation 〈f>, f<〉
would be to define f> and f< as f f and
f b, respectively.

f f :: Src → Tar
f b :: Src → Tar→ Src

A bidirectional transformation xmin
for the bidirectional program for present-
ing the minimum looks like:

xmin :: Ord a ⇒ ((a,a)→a,a→(a,a))
xmin = (f f, f b) where
f f (x,y) = if x<y then x else y
f b (x,y) t’ = if x<y then (t’,y) else (x,t’)

We can see that this satisfies the bidi-
rectional property of xmin mentioned in
Section 2.2. What we observe from this
example is: why do we need to evaluate
the expression if x<y ... again in back-
ward function? We know which compo-
nent should be replaced from the forward
transformation for the given source data.

To solve this problem, we will try to
parametrize the backward function with
the source. The key idea is this: if a
backward function f< is generated for
each instance of the source data s given
to the forward function f>, no more eval-
uation of s is required in the backward
transformation. This leads to our idea of
bidirectional functions.

5



3.1 Bidirectional functions

We propose here a novel idea of encapsu-
lating forward and backward functions in
a function called XFun, which is a higher
order function taking a function to give a
function. Using the XFun, bidirectional
transformation 〈f>, f<〉 is expressed as
a single function XFunf .

Definition (Bidirectional function)
A bidirectional function

XFunf :: XFuna b

is a function which takes a function
h :: b → b as argument and returns
a function of the type a → a as its
result1.

The basic idea of XFun is to keep
the result obtained in the course of eval-
uation of the forward function in it-
self for the backward function to use it
later. That is, the forward function f
of XFunf applied to the source s gives
a pair consisting of the view t and the
backward function f ′ which will be used
later when the backward transformation
is performed.

Hence, the function f of XFunf
works as f> of the bidirectional trans-
formation 〈f>, f<〉, and the function f ′

does for (f< s) which is the function f<

partially parametrized with the source
s. Much the same way as the function
(f< s) need to take only the modified
target t′ to bring the change back to the
source, f ′ takes t′ only for the backward
transformation.

We can define XFun in Haskell as

newtype XFun a b = XFun (a→(b,b→a)).

And we may give a definition of bidi-
rectional function xmin :

xmin :: Ord a ⇒ XFun (a,a) a
xmin = XFun f where

f (x,y)
| x<y = let f’ t’ = (t’, y) in (x,f’)
| otherwise = let f’ t’ = (x, t’) in (y,f’)

1Although a bidirectional function might be
defined simply by an ordinary function, intro-
duction of a functional datatype XFun would
make us concerned with this specific kind of
higher order functions.

Here, we can easily observe that no re-
dundant evaluation of the source occurs
in backward transformation. It should
be noted, however, that the bidirectional
function XFun produces a functional
closure as its intermediate result and
may consume space proportional to the
number of occurrences of XFuns in the
course of evaluation of forward functions.

Construction of bidirectional pro-
grams

A bidirectional program is constructed
from a bidirectional function

XFunf :: XFuna b

and a function

h :: b → b

by the combinator 〈|〉. The expres-
sion (XFunf〈|〉h) is a function over the
source data and behaves as a function of
the type (a → a) as shown in Figure 5.

Figure 5: Construction with 〈|〉

The construction combinator (〈|〉) is
implemented in Haskell as:

(〈|〉) :: XFun a b → (b→b) → a → a
(XFun f) 〈|〉 h=

\s → let (t,f’) = f s in f’ (h t)

Composition of bidirectional func-
tions

Bidirectional functions are combined to-
gether by the combinator 〈−〉. The ex-
pression (XFunf 〈−〉XFun g) is a bidi-
rectional function composed of XFunf
and XFun g in this order, that is, first
apply f to the source and then apply g
to that result in forward transformation.
Of course, the order of backward applica-
tion is the reverse of the forward (Figure
6).

6



Figure 6: Composition with 〈−〉

(〈−〉) :: XFun a b→XFun b c→XFun a c
(XFun f) 〈−〉 (XFun g) = XFun k where

k x = (z, f’.g’)
where
(y, f’) = f x
(z, g’) = g y

Bidirectional duplication by split

As we have seen in Section 2.3, our bidi-
rectional programming allows construc-
tion for duplication. More concretely,
we provide a construction mechanism
which combines two bidirectional func-
tions to generate a new bidirectional
function; the bidirectional split construc-
tion (XFunf 〈ˆ〉XFun g) accepts a sin-
gle source for f and g to produce the
view respectively and combine the re-
sults into a pair in its forward transfor-
mation. The backward transformation
reflect the changed result if any as the
result of the split (Figure 7).

Figure 7: Construction with 〈ˆ〉

Our bidirectional duplication can be
implemented by the split construction.

(〈ˆ〉) :: (Eq b, Eq c) ⇒
XFun a b→XFun a c→XFun a (b,c)

(XFun f) 〈ˆ〉 (XFun g) = XFun k where
k s = ((t f, t g), k’)

where
(t f, f’) = f s
(t g, g’) = g s
k’ (t f’, t g’)

| t g’==t g = f’ t f’
| otherwise = f’ t g’

This satisfies the bidirectional prop-
erty of duplication-by-split mentioned in

Section 2.3. Note that we assume here
that both of the pair are never modified
at a time. This is the meaning of our
duplication, while some conditions about
disjointness of the domains for tf and tg
may loosen this condition.

3.2 Bidirectional functions
on lists

If we are provided bidirectional functions
for lists in the standard Haskell library,
we can write bidirectional programs on
lists for free. That is, we can get bidi-
rectionality simply by writing programs
which transform the source in forward
direction; we do not need to write func-
tions for backward transformation.

Some examples of defining bidirec-
tional functions follow; xyyy corresponds
to the Haskell standard function yyy.

xfoldr :: XFun (a,b) b→b→XFun [a] b
xfoldr (XFun f) e = XFun k where

k xs = (y, k’ fs’)
where
(y, fs’) = foldr g (e,[ ]) xs

where
g x (z,fs’)=

let (z’,f’)=f(x,z) in (z’,f’:fs’)
k’ [ ] y’ = [ ]
k’ (f’:fs’) y’= x’:k’ fs’ z’

where (x’,z’)= f’ y’

xmap :: XFun a b → XFun [a] [b]
xmap (XFun f) = XFun k where

k xs = (ys, k’)
where
(ys, fs’) = unzip (map f xs)
k’ ys’=zipWith (\f’ y’ → f’ y’) fs’ ys’

xfilter :: (a→Bool)→XFun [a] [a]
xfilter p = XFun k where

k [ ] = ([ ], id)
k (x:xs)
| p x = (x:ys, k’)
| otherwise =(ys, k”)

where
(ys, g’)= k xs
k’ (y’:ys’) = y’: g’ ys’
k” ys’ = x: g’ ys’

xconcat :: XFun [[a]] [a]
xconcat = XFun k where
k xss = (concat xss, k’)

where
ls = map length xss

7



k’ ys’ = g ls ys’
g [ ] = [ ]
g (l:ls) ys’=take l ys’ :g ls (drop l ys’)

We can observe that these definitions
make full use of intermediate results
of forward transformation for the back-
ward. It should be noted that we as-
sume the length of the list produced for
the target view remains as it was before
modification by editing operations.

In addition to the standard Haskell li-
brary functions, we can write more com-
plex but useful functions such as sorting.

xsort :: Ord a ⇒ XFun [a] [a]
xsort = xfoldr xinsert [ ]

xinsert :: Ord a ⇒ XFun (a,[a]) [a]
xinsert = XFun k where

k (x, [ ]) = ([x], k’)
where k’ [y] = (y, [ ])

k (x, xs@(x’:xs’))
| x <= x’ = (x:xs, k’)
| otherwise = (x’:ys, k”)

where
k’ (y’:ys’) = (y’,ys’)
(ys, g’) = k (x,xs’)
k” (y’:ys’) = (y”, y’:ys”)

where (y”, ys”) = g’ ys’

Given these bidirectional functions, we
can demonstrate bidirectional programs
such as swapping the first two smallest
elements of the list as:

xfsts :: Ord a ⇒ [a] → [a]
xfsts = xsort 〈|〉 swapfsts

where
swapfsts (x:y:zs) = y:x:zs

An example GHCi session looks like

*Main> xfsts [2,5,1,4]

[1,5,2,4]

*Main> xfsts [3,4,1,2]

[3,4,2,1]

Another useful function is xremdups
which removes adjacent duplicate ele-
ments.

xremdups :: Ord a ⇒ XFun [a] [a]
xremdups = XFun k where

k [ ] = ([ ], id)
k [x] = ([x], id)
k (x:xs@(x’: ))
| x==x’ = (ys, k’)
otherwise = (x:ys, k”)

where
(ys, g’) = k xs
k’ ys’ = y’:ys”

where ys”@(y’: ) = g’ ys’
k” (y’:ys’) = y’ : g’ ys’

If we like to replace the minimal ele-
ments with value x, we write a bidirec-
tional program using xremdups as:

xrepmin :: Ord a ⇒ a → [a] → [a]
xrepmin x = xsort 〈−〉 xremdups 〈|〉 repfst x

where
repfst x (y:zs) = x:zs

An example session:

*Main> xrepmin 0 [3,1,2,3,4,1,1]

[3,0,2,3,4,0,0]

*Main> xrepmin 4 [3,1,2,3,4,1,1]

[3,4,2,3,4,4,4]

Note that corresponding Haskell func-
tions sort and remdups give

*Main> (remdups.sort)[3,1,2,3,4,1,1]

[1,2,3,4]

*Main> (repfst 0.remdups.sort)

[3,1,2,3,4,1,1]

[0,2,3,4]

And the forward transformation of the
bidirectional program xrepmin 0 behaves
like this, while the backward transforma-
tion of xrepmin 0 brings the first 0 to the
locations where the element 1 appears.

4 Bidirectionalizing
HaXml

In this section we will briefly review
the core of the combinator library of
HaXml [26], followed by bidirectionaliz-
ing HaXml by bidirectional functions.

The bidirectional HaXml called Bi-
HaXml brings about great productivity
and reliability for bidirectional program-
ming. That is, we need only to write
forward functions for intended applica-
tions and we get corresponding backward
functions for free.

To this purpose, the BiHaXml library
respects HaXml’s datatypes and names
as much as possible.

HaXml deals with internal representa-
tion of XML by the datatype Content:

8



<authorlist>

<author>

<name>Sachiko Kizu</name>

<email>sachiko@ipl</email>

</author>

<author>

<name>Masato Takeichi</name>

<email>takeichi@ipl</email>

</author>

<author>

<name>Zhenjiang Hu</name>

<email>hu@nii</email>

</author>

</authorlist>

Figure 8: An example of XML document

data Content = CElem Element
| CString Bool String
| CRef Reference
| CMisc Misc

data Element =
Elem String [Attribute] [Content]

type Attribute = (String, AttValue)
data AttValue =

AttValue [Either String Reference]
data Reference = ... (omitted)

An XML tree is represented by a Con-
tent tree, which is either a CElem or a
CString. A CElem node has its Element
consisting of the XML tag of type String,
an optional Attribute list, and an op-
tional children list of type Content. An
Attribute is represented by a pair of a
String key with associated value of type
AttValue, which may be either a String
or a Reference. A CString is a leaf of the
Content tree. We omit here the Refer-
ence for simplicity. Attributes will be in-
ternally extended in Section 5 to record
user editing.

Figure 9 rewrites an XML document of
Figure 8 in the HaXml representation.

4.1 HaXml combinators

Combinators in HaXml are called filters.
Filters have type

type CFilter = Content →[Content]

taking a Content and returning a possi-
bly empty sequence of Content.

CElem (Elem ”authorlist” [ ]
[CElem (Elem ”author” [ ]
[CElem (Elem ”name” [ ]
[CString False ”Sachiko Kizu”]),
CElem (Elem ”email” [ ]
[CString False ”sachiko@ipl”])]),

CElem (Elem ”author” [ ]
[CElem (Elem ”name” [ ]
[CString False ”Masato Takeichi”]),
CElem (Elem ”email” [ ]
[CString False ”takeichi@ipl”])]),

CElem (Elem ”author” [ ]
[CElem (Elem ”name” [ ]
[CString False ”Zhenjiang Hu”]),
CElem (Elem ”email” [ ]
[CString False ”hu@nii”])])])

Figure 9: An example of Content

Basic Filters

A set of basic filters in HaXML is given in
Figure 10. The simplest filters are keep
and none; keep takes any Content tree
and returns just that tree, and none fails
on any input (returning an empty list).

keep, none :: CFilter
keep x = [x]
none x = [ ]

The filter elm returns just this item if
it is a CElem element, otherwise it fails.
Conversely, txt returns this item only if
the item is a CString or a CRef, that is,
not a CElem element.

elm, txt :: CFilter
elm x@(CElem ) = [x]
elm = [ ]
txt x@(CString ) = [x]
txt x@(CRef ) = [x]
txt = [ ]

The filter (tag t) returns the input
only if it is a CElem which has the tag
name t.

tag :: String → CFilter
tag t x@(CElem(Elem n )) | t==n = [x]
tag t = [ ]

Content Constructors

The filter (literal s) always returns a
CString of s. The construction combi-
nator (mkElem n cfs) builds a CElem el-
ement with the tag n; the argument cfs

9



is a list of filters, each of which is ap-
plied to the current item. The results are
concatenated by the cat combinator de-
scribed below, and become the children
of the created element. (replaceTag n)
changes the node label n if the input is a
node, and returns empty list otherwise.

literal :: String → CFilter
literal s = const [CString False s]

mkElem :: String → [CFilter] → CFilter
mkElem n cfs t =

[CElem(Elem n [ ] (cat cfs t))]

replaceTag :: String → CFilter
replaceTag n (CElem(Elem cs)) =

[CElem(Elem n [ ] cs)]
replaceTag n = [ ]

The filters so far return either a single-
ton list of Content or an empty list. An
empty list is sometimes used to repre-
sent “failure” in filter application or the
False value in predicates.

Other filters do not have constraints
on the length of the output.

Content Selector

The filter children returns the immediate
children of the tree, if any.

children :: CFilter
children (CElem (Elem cs)) = cs
children = [ ]

Filter Combinators

Figure 10 also lists basic combinators
to compose CFilters out of simpler ones.
The sequential composition (f ‘o‘ g) ap-
plies g to the input, before applying f to
each of the output and concatenating the
results. For example, (children ‘o‘ tag s)
returns all the children immediately en-
closed by the input, provided that the
input is a CElem element with the tag s.

o :: CFilter → CFilter → CFilter
f ‘o‘ g = concatMap f . g

The expression (concatMap f) first
maps the filter f to each element of type
Content of the given list, and then con-
catenates the result of type [[Content]] to
get a list of Content. Note that the CFil-
ter g produces a value of [Content] from
one of Content.

The expression (f ‘union‘ g) concate-
nates the splitted results of filters f
and g, while (cat fs) is its generaliza-
tion to a list of filters. In fact, cat
is defined as cat=foldr1 union using a
standard Haskell function foldr1 in the
HaXml library [26].

The combinator expression (f ‘with‘ g)
acts as a guard on the results of f , keep-
ing only those that are productive (yield-
ing non-empty results) under g. Its dual,
(f ‘without‘ g), excludes those results of f
that are productive under g.

The expression (f ‘et‘ g) applies f to
the input if it is a CString, and applies
g otherwise. The expression (p?>f :>g)
represents conditional branches; if the
(predicate) filter p is productive given
the input, the filter f is applied to the
input, otherwise g is applied.

The expression (chip f) applies f to
the immediate children of the input. The
results are concatenated as new children
of the CElem element.

Derived Combinators

A number of useful tree transformations
can be defined as HaXml filters. For
instance, we may define the following
two path selection combinators (/>) and
(>/).

f />g = g ‘o‘ children ‘o‘ f
f >/ g = f ‘with‘ (g ‘o‘ children)

Both of them apply f to the input and
prune away those subelements of the re-
sult that does not make g productive
(i.e., g does not fail); (/>) can be seen
as selecting a subtree given a path. It
is an ‘interior’ selector, returning the in-
ner structure, while (>/) is an ‘exterior’
selector, returning the outer structure.

Another class of useful filter combina-
tors allows one to process trees recur-
sively. The combinator deep defined by

deep f = f ?>(f :>(deep f ‘o‘ children))

potentially pushes the action of filter f
deep inside the document subelement. It
first tries the given filter on the current
Content: if the filter is productive then

10



Predicates:
none :: CFilter zero
keep :: CFilter identity
elm :: CFilter tagged element?
txt :: CFilter plain text?
tag :: String → CFilter named root

Content Selector:
children :: CFilter children of the root

Content Constructors:
literal :: String → CFilter build plain text
mkElem :: String → [CFilter] → CFilter build a tree using filters
replaceTag :: String → CFilter replace root’s tag

Filter Combinators:
o :: CFilter → CFilter → CFilter sequential composition
union :: CFilter → CFilter → CFilter append results
cat :: [CFilter ] → CFilter concatenate ressults
with :: CFilter → CFilter → CFilter guard
without :: CFilter → CFilter → CFilter negative guard
et :: CFilter → CFilter → CFilter disjoint union
? > :> :: CFilter → CFilter → CFilter → CFilter condition

chip :: CFilter → CFilter in-place children application

Figure 10: Basic CFilters – predicates, selector, constructors and combinators

it stops, otherwise it moves to the chil-
dren recursively. Another powerful re-
cursion combinator is foldXml; the ex-
pression (foldXml f) applies the filter f
to every level of the Content tree, from
the leaves upwards to the root.

foldXm f = f ‘o‘ chip (foldXml f)

4.2 BiHaXml combinators

Our bidirectional combinators have type

type XFilter = XFun Content [Content].

The bidirectional filter XFun f of Bi-
HaXml applied to Content data s pro-
duces the result (t, f ′) where t is the re-
sult of forward transformation of f , and
f ′ is the corresponding backward trans-
formation.

Basic Filters

The basic combinators of HaXml are
bidirectionalized with XFuns to define
new XFilters.

keep, none :: XFilter
keep = XFun k where

k x = ([x], head)
none = XFun k where

k x = ([ ], const x)

The filters elm and txt are easily made
bidirectional with XFun as follows.

elm :: XFilter
elm = XFun k where

k x@(CElem ) = ([x], head)
f x = ([ ], const x)

txt :: XFilter
txt = XFun k where

k x@(CString ) = ([x], head)
k x@(CRef ) = ([x], head)
k x = ([ ], const x)

The bidirectional (tag t) returns the
result of the forward transformation.
According to its cases, the rules appear
in the above combinators apply; it re-
turns ([x], head) if the argument is ac-
ceptable, and does ([ ], const x) other-
wise.

tag t = XFun k where
k x@(CElem (Elem n ))

| t==n = ([x], head)
| otherwise = ([ ], const x)

k x = ([ ], const x)

Content Constructors

The filter (literal s) always returns a leaf
labeled s with the backward function
which returns the original regardless of

11



the change of the view. The construction
combinator (mkElem n cfs) builds a tree
with the node label n; the argument cfs
is a list of filters, each of which produces
its forward result and its backward trans-
formation. The forward transformation
by XFun is captured by the cat combi-
nator of XFilter described below. The
forward results are concatenated and be-
come the children of the created element,
with the backward function produced by
cat is kept in this XFun for the future
use of the backward transformation of
mkElem. The backward transformation
of (replaceTag n) is simple.

literal :: String → XFilter
literal s = XFun k where

k x = ([CString False s], const x)

mkElem :: String → [XFilter] → XFilter
mkElem n cfs = XFun k where

k s = ([CElem(Elem n [ ] t ) ], k’)
where
XFun g = cat cfs
(t, g’) = g s
k’ [CElem (Elem n t’)] = g’ t’

replaceTag :: String → XFilter
replaceTag n = XFun k where

k (CElem(Elem m as cs)) =
([CElem(Elem n as cs)], k’)

where
k’ [CElem(Elem as’ cs’)] =

CElem(Elem m as’ cs’)
k s = ([ ], const s)

Content Selector

The bidirectional filter children returns
the immediate children in forward direc-
tion and returns them in place in the fol-
lowing backward transformation.

children :: XFilter
children= XFun k where

k (CElem (Elem n as cs)) = (cs, k’)
where
k’ cs’ = CElem (Elem n as cs’)

children s = ([ ], const s)

Filter Combinators

Bidirectional combinators of XFilter
make full use of the characteristic
property of XFun in that the back-
ward function is instantiated by partial

parametrization with the input of the
forward function.

The bidirectional sequential composi-
tion (f ‘o‘ g) can be specified with auxil-
iary bidirectional functions (〈−〉), xmap,
and xconcat described in Sections 3.1
and 3.2. These functions correspond
to Haskell functions (.), map, and con-
cat used in the definition of the HaXml
combination (f ‘o‘ g)=(concatMap f . g),
or (concat .map f . g).

o :: XFilter → XFilter → XFilter
f ‘o‘ g = g 〈−〉 xmap f 〈−〉 xconcat

Note that application of the XFilter
composition (〈−〉) is performed from left
to right while CFilter composition o from
right to left.

The forward transformation of the
combinator union gives a concatenated
list of the results of its operand filters.
The filter (XFunf ‘union‘ XFun g)
takes source data s which is split and
shared by the two filters XFunf and
XFun g. The two filters produce their
results (tf , f ′) and (tg, g′) independently.
Although the duplication transforma-
tion described in Section 2.3 produces
a pair of the results of two functions,
the expression (XFunf ‘union‘ XFun g)
combines the results tf and tg into a sin-
gle list by concatenation. Hence, when
dealing with backward transformation,
we need to identify which part of the
target Content has been modified. Of
course, we were to compute tf and tg
again from the source, but it wil cost too
much and cause inefficiency in backward
transformation. We therefore keep
information of the intermediate results
tf and tg inside the XFun bidirectional
function for the later use in backward
transformation.

If the part of the view corresponding
to tf has been modified, then the back-
ward transformation f ′ can bring back
to the source, and similarly with g. An
implementation of union looks like:

union :: XFilter → XFilter → XFilter
(XFun f) ‘union‘ (XFun g) = XFun k where

k s = (t f++t g, k’)
where
(t f, f’)= f s
(t g, g’)= g s

12



l = length t f
k’ t’

| t g’==t g = f’ t f’
| t f’==t f = g’ t g’
where
t f’ = take l t’
t g’ = drop l t’

Here, we assume that the both of tf and
tg are never modified on the target view
t; at most one of them can be modi-
fied. We can define the bidirectional cat
with the use of bidirectionalized foldr1
and union as cat=foldr1 union. Defining
bidirectional cat in this way is, however,
inefficient than that by manipulating in-
termediate information as follows.

cat :: [XFilter] → XFilter
cat [ ] = XFun k where k s = ([ ], const s)
cat xfs = XFun k where

k s = (concat tss, k’)
where
(tss, gs’) =
unzip (map (\(XFun g)→g s) xfs)

ls = map length tss
k’ ts’ = h tss tss’ gs’

where
tss’ = unconcat ls ts’
unconcat [ ] = [ ]
unconcat (l:ls) ts’ =
take l ts’ : unconcat ls (drop l ts’)

h [ ] = s
h (ts:tss) (ts’:tss’) (g’:gs’)
| ts==ts’ = h tss tss’ gs’
| otherwise = g’ ts’

Other filter combinators have been
bidirectionalized to produce a XFilter.

Derived Combinators

Having bidirectionalized the basic filters
and filter combinators in terms of XFun,
most of high level combinators such as
recursive ones come out to be bidirec-
tional as they are by definition. These
are same as ones in the HaXml library.

Examples follow:

deep f = f ?>(f :> (deep f ‘o‘ children))

foldXm f = f ‘o‘ chip (foldXml f)

Finally, we have made a complete set
of bidirectionalized HaXml filters and
combinators, which counted over forty.

We can use this Bidirectional HaXml
Library BiHaXml to write bidirectional
programs for XML documents as easily
as we write programs for transform the
document in HaXml. Of course, we may
use BiHaXml for HaXml; evaluating Bi-
HaXml programs to the half way corre-
sponds to the HaXml evaluation.

5 A Bidirectional XML
Viewer

A bidirectional XML Viewer was built as
an illustrative example of using the Bi-
HaXml library for view-updating(Figure
11). The combinators defined in the
Text.XML.HaXml.Combinators module of
HaXml are replaced by the new XCombi-
nators module for bidirectional program-
ing. As the names of the combinators of
the BiHaXml follow the original HaXml,
existent HaXml code can be used as it is
in view-updating for free.

Bidirectional Transformation

  XFilters

Editing operations

Figure 11: Bidirectional XML Viewer

The module XCombinators contains
filters and combinators of BiHaXml,
or bidirectionalized ones of the HaXml
module. Several additional combinators
are included for editing and combinators
for Xtract query [25].

An example of bidirectional view-
updating program is shown in Figure 12.

13



module Main where
import Graphics.UI.WX
import XCombinators
import XParse (xtract)
import XViewer (xViewer)
main :: IO ( )
main = start (xViewer xfs) where

xfs = [(”Members”, members),
(”Emails”, emails)]

members= mkElem ”member”
[ keep />tag ”name” />txt ]

‘o‘ (keep />tag ”author”)
emails= xtract ”*/email”

Figure 12: A view-updating program

Editing operations and filters

View-updating through the target view
allows simple editing operations– “In-
sert”, “Delete”, and “Replace”.

Any CString element may be replaced
with a new text without any restric-
tion. But we require that inserting a new
CElem or deleting an existent CElem are
allowed provided that the related item
has been marked as “editable”. This
is because we like to keep the XML
structure with no additional information
about the document of our concern. If
we were to use type information like
DTD or XML Scheme, more elaborate
editing becomes available. But for sim-
plicity, we do not take this here.

Hence, editing in our Bidirectional
XML Viewer requires that the elment
which may be deleted or inserted need to
be marked before editing, and insertion
produces a copy of the existent item se-
lected by the mouse . Thus, our insertion
and deletion look like a loose-leaf binder
to which a sheet of paper is inserted or
from which one is removed.

For the element to be possibly made
inserted or deleted, the filter (loosen t)
marks the element with tag t by adding
an attribute to corresponding elements,
which is effective only in the target view.
The insertion operation makes a copy of
the selected element in its place, which
will be edited further by editing opera-
tions.

Bidirectional Xtract combinators

The combinators defined in Xtract mod-
ules of HaXml are called “Double filter”
DFilter.

type DFilter=Content→Content→[Content].

A double filter always takes the whole
document as an extra argument and we
can traverse it again from inner location
within the document. These combina-
tors are used in processing Xtract queries
which are similar to XPath. In our Bi-
HaXml, the DFilters of HaXml are bidi-
rectionalized as WFilter of type

newtype WFun a b=WFun(a→a→(b,b→a))
type WFilter = WFun Content [Content].

We have made several modifications
on the XParse module to generate WFil-
ters from Xtract expressions. The combi-
nator (xtract s) is a bidirectional XFilter
which returns the target view extracted
according to an Xtract expression s.

Bidirectional list filters

There is no reason why we do not include
bidirectional functions for list processing
described in Section 3.2. Our XCom-
binators module includes useful bidirec-
tional functions for lists which may be
used with original HaXml combinators.

6 Related Work

View-updating to correctly reflect the
modification on the view back to the
database [2, 6, 8, 21, 1] is an old problem
in the database community. In recent
years, however, the need to synchronize
data have been recognized by researchers
from different fields. And it is claimed
that multiple views of the same program
help to deal with in aspect-oriented pro-
gramming [13]. Recently, we have pro-
posed novel ideas on model synchroniza-
tion problems in software development
[27, 28, 29]. These all are related to bidi-
rectional transformation.

In the context of data synchroniza-
tion, [9] coined the “bidirectional up-
dating” problem. In [9, 7], a semantic
foundation and a programming language

14



(the “lenses”) for bidirectional transfor-
mations are given. They form the core
of the data synchronization system Har-
mony [22]. Another related language was
given by Meertens [16] to specify con-
straints in the design of user-interfaces.
Due to their intended applications, less
efforts were put on describing either
element-wise or structural dependency
inside the view.

The original motivation of our work
on bidirectional transformation was
to build a theoretical foundation for
presentation-oriented editors supporting
interactive development of XML doc-
uments, [24] for example, under the
“Dependable XML Processing Project”
conducted by the author. Along with
this project, another project proposed
a presentation-oriented generic editor
Proxima [23] to which one can “plug-
in” their own editors for different types
of documents and representations. How-
ever, it requires explicit specification of
both forward and backward updating.
Our goal is to specify only the forward
transform and derive the backward up-
dating automatically. We choose to
based our formalization of bidirectional
updating on injective mapping. The
extension to deal with duplication and
structural changes are thus easier to cope
with.

We have also developed a domain-
specific XML processing language called
X. The language X is basically a point-
free functional language closely related
to the languages in [16] and [9]. How-
ever, the treatments with duplication
and alignment were not satisfactory. Be-
sides XML processing languages, more
primitive language Inv with bidirec-
tional semantics has been developed [18].
In order to resolve the problem of du-
plication and alignment, we attempt to
embed both HaXml and X into Inv. The
embedding of HaXml is recorded in [19],
which was preceded by a draft of imple-
mentation [10]. That for X is described
in [12], which is an extended version of
an earlier publication [11].

From the viewpoint of domain-specific
languages, another attempt of defining a
language called Bi-X [14] produced re-

sults of useful system for practical appli-
cations. The language Bi-X shares the
idea of X and Inv and implemented as
a Java library Bi-XJ for use in applica-
tions. We developed a tool for trans-
lating XQuery expressions into Bi − X
code for bidirectional queries with up-
dates [15]. The Bi-XJ library was used
for developing an XML-based Web pub-
lishing tool called Vu-X [20] which pro-
vides us for updating Web pages through
browsers based on bidirectionality.

Among them, the most influential
work for this paper would be [12]. The
approach of this work is, however, differ-
ent from the previous work on bidirec-
tional transformation. We did not fol-
low the way of embedding a language
into another, but have defined directly
in a general purpose functional language.
The framework of bidirectional program-
ming makes aware of defining bidirec-
tional transformation with a higher order
function XFun, which encapsulates for-
ward and backward functions in a single
function. This will make bidirectional
programming be applied to wider range
of problems.

7 Conclusions

We have presented a novel idea of defin-
ing bidirectional functions which com-
prises bidirectional programs with its ap-
plication to implementation of the Bi-
HaXml for XML processing. We also
developed a Bidirectional XML Viewer
with GUI to exemplify our idea.

With the bidirectionalization of the
existent HaXml library, any HaXml
transformations gain bidirectionality for
free. This makes HaXml be a more
powerful transformation language than
it was first designed for.

We believe that bidirectional pro-
gramming approach will be applied to
wider domains of data update problems.
Given a forward transformation, we get
the backward transformation by defining
bidirectional functions. A well-designed
domain-specific library will free us from
writing new bidirectional functions and
make bidirectional programming unidi-

15



rectional; that is, we need only consider
how to transform the source into the tar-
get with the library functions.

However, we have an issue in designing
domain-specific languages. Although de-
signing a new domain-specific language
with bidirectional semantics would be
an attractive approach, we always suffer
from the problem of descriptive power,
i.e., to what extent it works by itself.
Our approach here provides a domain-
specific library, BiHaXml for XML in
a general purpose functional language
Haskell and we are free to use language
features not provided in BiHaXml. The
point-free style of programming is also
attractive for transformation and reason-
ing about programs, but fails in concise
description of modularization. We may
want to use definitions or bindings of ex-
pressions with identifiers, which may ap-
pear as free variables in combinator ex-
pressions. We can write a simple code for
resolving ID/IDREF’s in an XML docu-
ment as

dfilter
(ofoldXmlo(oiffindo ”pref” lookfor okeepo))

where
lookfor v= global(deep

(attrval(”pid”,AttValue[Left v])))

Here, the identifiers except lookfor are
combinators of BiHaXml (and of course
of HaXml), and the variable binding of
lookfor appears for the function defini-
tion. Without any binding mechanism,
it would be difficult to solve the problem
by such simple expressions.

Another issue is a semantic one. We
assume that the view produced by du-
plication might be modified in one data
item at a time. This restriction is ex-
plained in Sections 2.3 and 3.1. We can-
not use our bidirectional programs in of-
fline environment where several modifi-
cations are made before backward trans-
formation. Neither we allow editing op-
eration that changes more than two data
items at a time. The restriction comes
from a technical requirement for defining
the semantics of backward transforma-
tion in consistent as well as concise de-
scription. As long as we update the view
online using simple operations like in our
XML Viewer, we do not care about it.
But in more general situations we might

be required to deal with more complex
editing operations. Anyway, this prob-
lem can be characterized by properties
of function h in bidirectional programs.

We need study more on these issues
through practical applications of bidirec-
tional programming.

Acknowledgments
The author would like to thank thank

to Zhenjiang Hu and Shin-Cheng Mu for
discussion on bidirectional transforma-
tion, and Sachiko Kizu for BiHaXml im-
plementation. Also thanks to the mem-
bers of the IPL laboratory, University of
Tokyo.

This work is partially supported by
the Japan Society for the Promotion of
Science, Grant-in-Aid for Scientific Re-
search (A) 19200002 on “Bidirectional
Transformation and its Application”.

References

[1] Abiteboul, S.: On views and
XML, Proceedings of the 18th ACM
SIGPLAN-SIGACT-SIGART Sym-
posium on Principles of Database
Systems, ACM Press, 1999, pp. 1–
9.

[2] Bancilhon, F. and Spyratos,
N.: Update semantics of re-
lational Views, ACM Trans-
actions on Database Systems,
Vol. 6,No. 4(1981), pp. 557–575.

[3] Bennett, C. H.: Logical reversibil-
ity of computation, IBM Jour-
nal of Research and Development,
Vol. 17,No. 6(1973), pp. 525–532.

[4] Benzaken, V., Castagn, G., and
Frisch, A.: CDuce: an XML-centric
general-purpose language, Proceed-
ings of the 2003 ACM SIGPLAN
International Conference on Func-
tional Programming, ACM Press,
2003.

[5] Bray, T., Paoli, J., Sperberg-
Macqueen, C. M., and Maler,
E.: Extensible Markup Lan-
guage (XML) 1.0 (Second
Edition), October 2000.
http://www.w3.org/TR/REC-xml.

16



[6] Dayal, U. and Bernstein, P. A.: On
the correct translation of update op-
erations on relational views, ACM
Transactions on Database Systems,
Vol. 7,No. 3(1982), pp. 381–416.

[7] Foster, J. N., Greenwald, M. B.,
Moore, J. T., Pierce, B. C.,
and Schmitt, A.: Combinators
for bi-Directional tree transforma-
tions: a linguistic approach to the
view update problem, The 32nd
ACM SIGPLAN–SIGACT Sympo-
sium on Principles of Programming
Languages (POPL 2005), Long
Beach, California, ACM Press,
2005, pp. 233–246.

[8] Gottlob, G., Paolini, P., and Zi-
cari, R.: Properties and update se-
mantics of consistent views, ACM
Transactions on Database Systems,
Vol. 13,No. 4(1988), pp. 486–524.

[9] Greenwald, M. B., Moore, J. T.,
Pierce, B. C., and Schmitt, A.:
A language for bi-directional tree
transformations, Technical Report,
MS-CIS-03-08, University of Penn-
sylvania, August 2003.

[10] Hu, Z., Emoto, K., Mu, S.-C.,
and Takeichi, M.: Bidirectional-
izing Tree Tranformations, Work-
shop on New Approaches to Soft-
ware Construction (WNASC 2004),
Komaba, Tokyo, Japan, September
13-14, 2004.

[11] Hu, Z., Mu, S.-C., and Takeichi,
M.: A programmable Editor for
Developing Structured Documents
based on Bidirectional Transforma-
tions, Proceedings of ACM SIG-
PLAN 2004 Symposium on Partial
Evaluation and Program Manipula-
tion, Verona, Italy, ACM Press, Au-
gust 2004.

[12] Hu, Z., Mu, S.-C., and Takeichi, M.:
A programmable Editor for Devel-
oping Structured Documents based
on Bidirectional Transformations,
Higher-Order and Symbolic Com-
putation (HOSC), Springer, 2008.

pp.89-118. An earlier version ap-
peared in ACM PEPM ’04.

[13] Janzen, D. and de Volder, K.: Pro-
gramming with crosscutting effec-
tive views, ECOOP 2004 - Object-
Oriented Programming, 18th Eu-
ropean Conference, Lecture Notes
in Computer Science, No. 3086,
Springer-Verlag, June 14-18, 2004,
pp. 195–218.

[14] Liu, D., Hu, Z., Takeichi, M.,
Kakehi, K., and Wang, H.: A Java
Library for Bidirectional XML
Transformation, JSSST Computer
Software, Vol.24, No.2, 2007.
pp. 164–177.

[15] Liu, D., Hu, Z., and Takeichi,
M.: Bidirectional Interpretation
of XQuery, ACM SIGPLAN 2007
Workshop on Partial Evaluation
and Program Manipulation (PEPM
2007), Nice, France, January 15-16,
2007.

[16] Meertens, L.: Designing constraint
maintainers for user interaction,
1998. ftp://ftp.kestrel.edu/
pub/papers/meertens/dcm.ps.

[17] Mu, S.-C., Hu, Z., and Takeichi,
M.: An Injective Language for Re-
versible Computation, Seventh In-
ternational Conference on Math-
ematics of Program Construction,
Lecture Notes in Computer Sci-
ence, No. 3125, Springer-Verlag,
July 2004.

[18] Mu, S.-C., Hu, Z., and Takeichi,
M.: An algebraic approach to bi-
directional updating, The Second
Asian Symposium on Programming
Language and Systems(Chin, W.-
N.(ed.)), Lecture Notes in Com-
puter Science, No. 3302, Springer-
Verlag, November 4-6, 2004, pp. 2–
20.

[19] Mu, S.-C., Hu, Z., and Takeichi, M.:
Bidirectionalizing Tree Transforma-
tion Languages: A Case Study,
JSSST Computer Software, Vol.23,
No.2, 2006. pp. 129–141.

17



[20] Nakano, K., Hu, Z., and Takeichi,
M.: Consistent Web Site Updat-
ing based on Bidirectional Trans-
formation, 10th IEEE International
Symposium on Web Site Evolution
(WSE 2008), Beijing, China, Octo-
ber 3-4, 2008.

[21] Ohori, A. and Tajima, K.: A
polymorphic calculus for views
and object sharing, Proceedings of
the 13th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles
of Database Systems, ACM Press,
1994, pp. 255–266.

[22] Pierce, B. C., Schmitt, A., and
Greenwald, M. B.: Bringing har-
mony to optimism: an exper-
iment in synchronizing heteroge-
neous tree-structured data, Tech-
nical Report, MS-CIS-03-42, Uni-
versity of Pennsylvania, March 18,
2004.

[23] Schrage, M. M.: Proxima -
A presentation-oriented editor for
structured documents, PhD The-
sis, Utrecht University, The Nether-
lands, 2004.

[24] Takeichi, M., Hu, Z., Kakehi,
K., Hayashi, Y., Mu, S.-C., and
Nakano, K.: TreeCalc:towards pro-
grammable structured documents,
The 20th Conference of Japan Soci-
ety for Software Science and Tech-
nology, September 2003.

[25] Wallace, M. and Runciman,
C.: Xtract: a query lang-
guage for XML documents,
http://www.haskell.org/HaXml/
Xtract.html, 1998.

[26] Wallace, M. and Runciman, C.:
Haskell and XML: generic com-
binators or type-based transla-
tion? , Proceedings of the 1999
ACM SIGPLAN International Con-
ference on Functional Program-
ming, ACM Press, September 1999,
pp. 148–159.

[27] Xiong, Y., Liu, D., Hu, Z., Zhao,
H., Takeichi, M., and Mei, H.:

Towards Automatic Model Syn-
chronization from Model Transfor-
mations. Proceedings of the 22nd
IEEE/ACM International Confer-
ence on Automated Software Engi-
neering (ASE’07), Atlanta, Geor-
gia, pp. 164–173, November 2007.

[28] Xiong, Y., Hu, Z., and Takeichi,
M.: Supporting Parallel Updates
with Bidirectional Model Transfor-
mations. Proceedings of the Second
International Conference on Model
Transformation (ICMT’09), ETH
Zurich, Switzerland, pp. 213–228,
June 2009.

[29] Xiong, Y., Hu, Z., Zhao, H., Song,
H., Takeichi, M. and Mei, H.: Sup-
porting Automatic Model Incon-
sistency Fixing. Proceedings of 7th
Joint Meeting of the European Soft-
ware Engineering Conference and
the ACM SIGSOFT Symposium on
the Foundations of Software Engi-
neering (ESEC/FSE’09) , August
2009.

18



A The use of Bidirec-
tional XML Viewer

The Bidirectional XML Viewer is imple-
mented with GHC version 6.10.3 and wx-
Haskell 0.11.1.2 on Mac OS X, and with
GHC version 6.8.3 and wxHaskell 0.10.3
on Microsoft Windows operating system.
The HaXml library version 1.13.3 and
the viewer module are common to both
systems.

The viewer is implemented as a
separate module provided as XViewer.
The XFilters of BiHaXml are defined
in a module XCombinators which re-
places Text.XML.HaXml.Combinators
module of HaXml. We needed to
make small changes in the module
Text.XML.HaXml.Xtract.Parse for our
Wfilters instead of DFilters of HaXml
Xtract, and renamed the module as
XParse. These are the all modules
for our Bidirectional XML Viewer for
view-updating.

The Bidirectional Viewer consists of
several panels in a GUI frame as shown
in Figure 13. This is a screenshot on
Windows XP, while other screenshots
will be taken on Mac OS.

Figure 13: Bidirectional XML Viewer

The topmost panel contains icons for
file input and output as well as one for
undoing the operation, and the status
bar at the bottom of the frame indi-
cates the XFilter currently applied to the
source.

The main part of the frame consists

of two panels for displaying the source
and the target Content in tree form. The
tree may be collapsed and expanded by
pressing the node.

The Content tree for XML may con-
tain white spaces for layout as text el-
ements which appear most often after
reading an XML document. But in most
transformation of our interest, we will be
happy if we disregard these white spaces
from the Content by pressing the “Lay-
out Off” button placed above the source
tree area. And the layout spaces for in-
dentation are properly inserted by press-
ing the “Layout On” button.

The target tree frame is associated
with three buttons “Insert”, “Delete”,
and “Replace”. These buttons are
pressed for editing the selected element
on the target tree. Pressing the In-
sert button makes a copy of the se-
lected element be inserted beside that
element, provided the element has been
loosen (See Section 5). Similarly, the
Delete button deletes the selected ele-
ment among the loosened elements. No-
tice that deletion of the single child ele-
ment of some element cannot get it back
by insertion because insertion requires
the element to be copied. When the Re-
place button is pressed, a textbox ap-
pears to accept the string to be replaced
for the selected text element. Replace-
ment is always possible for any text el-
ement unless it has been produced only
for reference. See Section B below for
ID/IDREF resolution.

The panel between the source and the
target tree areas is allocated for the but-
tons placed for each XFilter to be applied
to the source tree.

The topmost button for “Xtract” is
provided for interactive querying by
Xtract patterns, which the user gives
through a popup textbox. And the
“Keep” filter is also predefined as the de-
fault, which keeps the source to produce
the target as it is.

Other filters are programmed by the
user as shown in Figure 14. XFilters
are defined by a variable associated with
a combinator expression and a name is
given for displaying it in the button. The
name “Authors” is given to the filter def-

19



inition of “authorlist” as shown in the fil-
ter list xfs, which is the argument of the
viewer xViewer.

module Main where
import Graphics.UI.WX
import Text.XML.HaXml.Types
import XCombinators
import XParse (xtract)
import XViewer (xViewer)
main = start (xViewer xfs) where
xfs = [ (”Authors”, authorlist),

(”Papers”, paparlist)]
authorlist= xtract ”//author”

<-> xsort
<-> xremdups

paperlist= loosen [”paper”, ”author”]

Figure 14: XFilters for View-updating

The editing operations on the target
view are immediately reflected on the
source and then on the target as de-
scribed in Section 2.2. If you want to
see what happens, the “Undo” button
will help showing the process backward
in a step-by-step way; first the forward
transformation from the modified source
with the modification of the source by
the backward transformation is canceled,
and then the modification on the target
tree is canceled.

In the followings, we exemplify the use
of the viewer with a small XML docu-
ment excerpted from the publication list
of the references, which contains 7 pub-
lications and of the form as Figure 15.
We will learn bidirectional programming
with BiHaXml through several XFilter
examples.

We start editing by reading the XML
file and get the initial screen with the
same source and the target trees.

A.1 Querying by Xtract

The Xtract tool of the HaXml can be
used as a kind of “XML-grep” at the
command line as well as a CFilter. We
can use it in our Bidirectional XML
Viewer by simply putting query patterns
interactively. The result of the query
is shown as the target view of forward
transformation. And editing operations
may be taken for updating the source

<publist>

<paper>

<authors>

<author>Hu, Z.</author>

<author>Emoto, K.</author>

<author>Mu, S.-C.</author>

<author>Takeichi, M.</author>

</authors>

<title>Bidirectionalizing ...</title>

<year>2004</year>

</paper>

<paper>

<authors>

<author>Hu, Z.</author>

<author>Mu, S.-C.</author>

<author>Takeichi, Masato</author>

</authors>

<title>A programmable Editor ...</title>

<year>2008</year>

</paper>

...

<paper>

<authors>

<author>Xiong, Y.</author>

<author>Hu, Z.</author>

<author>Takeichi, M.</author>

</authors>

<title>Supporting Parallel ...</title>

<year>2009</year>

</paper>

</publist>

Figure 15: An XML document

through this view by bidirectional set-
tings.

When we press the “Xtract” filter but-
ton, another textbox appears for the user
to put an Xtract pattern (Figure 16).

Putting the pattern to query, we will
get the result on the target tree area.
Figure 17 shows the result of the query
with the pattern “//title”, which means
the title elements found at any depth of
the publist, the root of the source tree.

Note that our XFilter may generate a
list with more than two Content elements
as observed in this case. The viewer
makes a virtual root with the tag * to
make a tree with these elements as chil-
dren.

Interactive query by Xtract patterns
is useful for designing HaXml programs
through examination of access paths to
the element.

A.2 Making them unique

We could make a query for the authors
in the publication list with the pattern

20



Figure 16: Interactive Xtract query

Figure 17: Titles in Publist.xml

“//author”. The XFilter (xtract ”//au-
thor”) does this much the same way
as in interactive query. Combined this
with bidirectional functions xsort and
xremdups described in Section 3.2, we
may define a XFilter authorlist as shown
in Figure 14.

This filter first collects author’s names
which appear in any authors’ lists of
any papers by the extract filter. Then
these names are sorted, and finally adja-
cent duplicates are removed. Hence only
the different names in the original docu-
ments appear in the target view. Figure
18 shows the result applied to our XML
document. Here, we can see that similar

names appear; one is written with initial
of the first name but the other written
in full name.

Figure 18: Remdups after sorting

Such inconsistency is corrected with
ease by replacing the name with correct
one. To do this, select the text element
and press the Replace button. A textbox
is popped up for text input (Figure 19).

Figure 19: Replacement of the name

When “OK” button is pressed, the
backward transformation brings the
change to the source and then do the
forward transformation again to get the
view. This time, only the name with ini-
tial appears (Figure 20).

21



Figure 20: Names are made unique

A.3 Inserting new items

As far as text editing, we can freely re-
place the text element as shown above.
However, we need to invent some mech-
anism of editing for structured elements.
As described in the leading part of
the Appendix, we provide a XFilter
for marking the “editable” element. A
simple code (loosen [”paper”, ”author”])
marks all the element with tags paper or
author at any depth of the current ele-
ment.

Hence, the filter called “Papers” de-
fined in Figure 14 applied to the source
document produces the target shown in
Figure 21. The mark is shown as =”*”,
which is implemented internally as an at-
tribute with the “empty” key of the value
*.

If we want to insert a new “paper” el-
ement in front of the first one, select the
first element and press the Insert button.
This produces a copy of the first element
inserted in front both in the target and
the source trees as shown in Figure 22.

Now we can change the text elements
under the inserted copy, or may insert or
delete the “author” elements which have
been marked editable, too.

We can see how this loosening mech-
anism works well if we undo the op-
eration. The internal attribute value
for the key ”” is changed to ”+” or to
”-” respectively for insertion or deletion
before backward transformation. This

Figure 21: Loosening “editable” ele-
ments

keeps the number of concatenated ele-
ments produced by the forward transfor-
mation. As described in Section 4.2, the
number of the results of component fil-
ters is the key issue of backward trans-
formation. Insertion and deletion is per-
formed in effect as the backward trans-
formation of the loosen filter.

A.4 Publishing Web Pages

An attractive application of XML doc-
uments would be XML-based Web Pub-
lishing. Web publishing based on HTML
has problems is how to maintain the con-
sistency of the contents. Consider, for
example, the author’s name need to be
changed for some reasons in Web pages
of the publication list. If the name is
originated from a single instance in a
XML document and the HTML views
are produced from that document, what
we have to do is to change the single in-
stance in that document. Otherwise, we
need to find out where the name appears
in the HTML document; there may scat-
ter in many places in many pages and we
have to take the trouble to make them
consistently updated. Thus, we apply

22



Figure 22: A copy inserted beside its
original

our bidirectionality with duplication by
splitting to produce Web pages from an
XML document.

An example bidirectional program
with BiHaXml is shown here as Figure
23.

publish html=
mkElem ”html” [
mkElem ”body” [
mkElem ”h3” [literal ”Authors”],
mkElem ”ul”

[replaceTag ”li” ‘o‘ authorlist],
mkElem ”h3” [literal ”Papers”],
mkElem ”ol” [
mkElem ”li” [
replaceTag ”strong” ‘o‘

(keep /> tag ”title”),
literal ”, ”,
replaceTag ”i” ‘o‘ (keep /> tag ”year”),
mkElem ”li” [
replaceTag ”li” ‘o‘

(deep (tag ”author”))]] ‘o‘
(keep /> tag ”paper”)] ] ]

Figure 23: Publishing XHTML

We have a view produced by the
code publish html for our Publist.xml as
shown in Figure 24.

The view contains duplications for the

Figure 24: Publishing XHTML

authors’ name. One appears in the list
of the authors, and several occurrences
in the authors’ part in each paper. Of
course, we may modify the contents by
editing the target view with XHTML
tags and the changes will be back to the
source as examples above show. This is
the basic idea of our previous work on
Vu-X [20], which is provided an inter-
face for editing through the view on Web
browsers.

Figure 25: A View on Safari

23



By pressing the “Take” icon and giv-
ing the file name, we get the HTML file
which can be viewed with polular Web
browsers like Safari, Internet Explorer,
and Firefox. Figure 25 is an example dis-
played on the Safari browser.

B Resolving
ID/IDREF

In designing the database of publica-
tions, the uniqueness of the authors’
name would be realized by the use of the
ID/IDREF mechanism in some ways.

Given an XML document which cor-
responds to the view in HTML format
above. We assume that we have an
XML document which contains the Au-
thors element keeping the names of the
authors, and the Papers element for the
publications. The paper elements of the
Papers element contains the author ele-
ments which refer to an author element
in the authors element.

This reference is represented by the
ID/IDREF mechanism with the use of
attribute; we use ID key of pid and
IDREF key of pref. Figure 26 shows the
XML file for our publication lists with
ID/IDREF.

As mentioned in Conclusions, the filter

dfilter
(ofoldXmlo(oiffindo ”pref” lookfor okeepo))

where
lookfor v= global(deep

(attrval(”pid”,AttValue[Left v])))

makes the IDREF element replaced by
the corresponding ID element which is
shown in Figure 27.

We should notice that the author ele-
ments under the Papers element should
not be modified on the target view, be-
cause those elements are references to
the elements which define the unique
names. In fact, in our implementation of
the Wfilters, the text element in the tar-
get view cannot be replaced with. But
there remain the problems how to build
XML documents with ID/IDREF from
simple ones, for example.

<Publist>

<Authors>

<author pid="KE">Emoto, K.</author>

<author pid="ZH">Hu, Z.</author>

<author pid="SK">Kizu, S.</author>

<author pid="DL">Liu, D.</author>

<author pid="SM">Mu, S.-C.</author>

<author pid="KN">Nakano, K.</author>

<author pid="MT">Takeichi, M.</author>

<author pid="YX">Xiong, Y.</author>

</Authors>

<Papers>

<paper>

<authors>

<author pref="SK"/>

<author pref="MT"/>

<author pref="ZH"/>

</authors>

<title>Bidirectional ... </title>

<year>2009</year>

</paper>

<paper>

<authors>

<author pref="ZH"/>

<author pref="KE"/>

<author pref="SM"/>

<author pref="MT"/>

</authors>

<title>Bidirectionalizing ... </title>

<year>2004</year>

</paper>

...

</Publist>

Figure 26: A Document with ID/IDREF

Figure 27: Resolving ID/IDREF

24


