
Parallelization with Tree Skeletons

Kiminori Matsuzaki1, Zhenjiang Hu1,2, and Masato Takeichi1

1 Graduate School of Information Science and Technology,
University of Tokyo

kmatsu@ipl.t.u-tokyo.ac.jp

{hu,takeichi}@mist.i.u-tokyo.ac.jp
2 PRESTO21, Japan Science and Technology Corporation.

Abstract. Trees are useful data structures, but to design efficient paral-
lel programs over trees is known to be more difficult than to do over lists.
Although several important tree skeletons have been proposed to simplify
parallel programming on trees, few studies have been reported on how to
systematically use them in solving practical problems; it is neither clear
how to make a good combination of skeletons to solve a given problem,
nor obvious even how to find suitable operators used in a single skele-
ton. In this paper, we report our first attempt to resolve these problems,
proposing two important transformations, the tree diffusion transforma-
tion and the tree context preservation transformation. The tree diffusion
transformation allows one to use familiar recursive definitions to develop
his parallel programs, while the tree context preservation transformation
shows how to derive associative operators that are required when using
tree skeletons. We illustrate our approach by deriving an efficient par-
allel program for solving a nontrivial problem called the party planning
problem, the tree version of the famous maximum-weight-sum problem.

Keywords: Parallel Skeletons, Tree Algorithms, Parallelization, Pro-
gram Transformation, Algorithm Derivation.

1 Introduction

Trees are useful data types, widely used for representing hierarchical structures
such as mathematical expressions or structured documents like XML. Due to
irregularity (imbalance) of tree structures, developing efficient parallel programs
manipulating trees is much more difficult than developing efficient parallel pro-
grams manipulating lists. Although several important tree skeletons have been
proposed to simplify parallel programming on trees [4, 5, 13], few studies have
been reported on how to systematically use them in solving practical problems.

Although many researchers have devoted themselves to constructing system-
atic parallel programming methodology using list skeletons [1, 2, 6, 8], few have
reported the methodology with tree skeletons. Unlike linear structure of lists,
trees do not have a linear structure, and hence the recursive functions over trees
are not linear either (in the sense that there are more than one recursive call in

2 Kiminori Matsuzaki et al.

the definition body). It is this nonlinearity that makes the parallel programming
on trees complex and difficult to solve.

In this paper, we aim at a systematic method for parallel programming using
tree skeletons, by proposing two important transformations, the tree diffusion
transformation and the tree context preservation transformation.

– The tree diffusion transformation is an extension of the list version [8]. It
shows how to decompose familiar recursive programs into equivalent parallel
ones in terms of tree skeletons.

– The tree context preservation transformation is an extension of the list ver-
sion [1]. It shows how to derive associative operators that are required when
using tree skeletons.

In addition, to show the usefulness of these theorems, we demonstrate a
derivation of an efficient parallel program for solving the party planning problem,
using tree skeletons defined in Section 2. The party planning problem is an
interesting tree version of the well-known maximum-weight-sum problem [2],
which appeared as an exercise in [3].

Professor Stewart is consulting for the president of a corporation that
is planning a company party. The company has a hierarchical tree struc-
ture; that is, the supervisor relation forms a tree rooted at the president.
The personnel office has ranked each employee with a conviviality rating,
which is a real number. In order to make the party fun for all attendees,
the president does not want both an employee and his or her immediate
supervisor to attend. The problem is to design an algorithm making the
guest list, and the goal is to maximize the sum of the conviviality rating
of the guest.

It is not easy to decide which tree skeletons to use and how to combine them
properly so as to solve this problem. Moreover, skeletons impose restriction (such
as associativity) on the functions and operations, and it is not straightforward
to find such ones.

The rest of the paper is as follows. After reviewing the tree skeletons in Sec-
tion 2, we explain our two parallelization transformations for trees: the diffusion
transformation in Section 3, and the context preservation transformation in Sec-
tion 4. We show the experimental results in Section 5, and give conclusion in
Section 6.

2 Parallel Skeletons on Trees

To simplify our presentation, we consider binary trees in this paper. The primi-
tive parallel skeletons on binary trees are map, zip, reduce, upwards accumulate
and downwards accumulate [13, 14], and their formal definitions using the nota-
tion of the Haskell language [9] are described in Fig 1. We will use the Haskell
notation for the rest of this paper.

Parallelization with Tree Skeletons 3

data BTree α β = Leaf α
| Node (BTree α β) β (BTree α β)

map :: (α → γ, β → δ) → BTree α β → BTree γ δ
map (fL, fN) (Leaf n) = Leaf (fL n)
map (fL, fN) (Node l n r) = Node (map (fL, fN) l) (fN n) (map (fL, fN) r)

zip :: BTree α β → BTree γ δ → BTree (α, γ) (β, δ)
zip (Leaf n) (Leaf n′) = Leaf (n, n′)
zip (Node l n r) (Node l′ n′ r′) = Node (zip l l′) (n, n′) (zip r r′)

reduce :: (α → γ, γ → β → γ → γ) → BTree α β → γ
reduce (fL, fN) (Leaf n) = fL n
reduce (fL, fN) (Node l n r) = fN (reduce (fL, fN) l) n (reduce (fL, fN) r)

uAcc :: (α → γ, γ → β → γ → γ) → BTree α β → BTree γ γ
uAcc (fL, fN) (Leaf n) = Leaf (fL n)
uAcc (fL, fN) (Node l n r) = let l′ = uAcc (fL, fN) l

r′ = uAcc (fL, fN) r
in Node l′ (fN (root l′) n (root r′)) r′

dAcc :: (γ → γ → γ) → (β → γ, β → γ) → BTree α β → γ → BTree γ γ
dAcc (⊕) (fL, fR) (Leaf n) c = Leaf c
dAcc (⊕) (fL, fR) (Node l n r) c = Node (dAcc (⊕) (fL, fR) l (c⊕ fL n)) c

(dAcc (⊕) (fL, fR) r (c⊕ fR n))

Fig. 1. Definitions of five primitive skeletons

The map skeleton map (fL, fN) applies function fL to each leaf and function
fN to each internal node. The zip skeleton accepts two trees of the same shape
and returns a tree whose nodes are pairs of corresponding two nodes of the orig-
inal two trees. The reduce skeleton reduce (fL, fN) reduces a tree into a value by
applying fL to each leaf, and fN to each internal node upwards. Similar to reduce,
the upwards accumulate skeleton uAcc (fL, fN) applies fL to each leaf and fN to
each internal node in a bottom-up manner, and returns a tree of the same shape
as the original tree. The downwards accumulate skeleton dAcc (⊕) (fL, fR) c
computes by propagating accumulation parameter c downwards, and the accu-
mulation parameter is updated by ⊕ and fL when propagated to left child, or
updated by ⊕ and fR when propagated to right child.

To guarantee the existence of efficient implementation for the parallel skele-
tons, we have requirement on the operators and functions used in the above
skeletons.

Definition 1 (Semi-Associative). A binary operator ⊗ is said to be semi-
associative if there is an associative operator ⊕ such that for any a, b, c, (a ⊗
b)⊗ c = a⊗ (b⊕ c). 2

Definition 2 (Quasi-Associative). A binary operator ⊕ is said to be quasi-
associative if there is a semi-associative operator ⊗ and a function f such that
for any a, b, a⊕ b = a⊗ f b. 2

4 Kiminori Matsuzaki et al.

Definition 3 (Bi-Quasi-Associative). A ternary operator f is said to be bi-
quasi-associative if there is a semi-associative operator ⊗ and two functions
f ′L, f ′R such that for any l, n, r, f l n r = l ⊗ f ′L n r = r ⊗ f ′R n l. We can fix a
bi-quasi-associative operator f by providing ⊗, ⊕ (associative operator for ⊗),
f ′L and f ′R, therefore, we will write f with 4-tuple as f ≡ [[⊗,⊕, f ′L, f ′R]]. 2

Based on the tree contraction technique [12], we require the fN used in the
reduce and upwards accumulate be bi-quasi-associative, and ⊕ in downwards
accumulate be associative. We omit the detailed description of the cost for each
skeleton. Informally, if all the operators used in the skeletons use constant time,
all skeletons can be implemented in at most O(log N) parallel time using enough
processors, where N denotes the number of nodes in the tree.

3 Tree Diffusion Theorem

Hu et al. proposed the diffusion theorem (on lists) [8], with which we can directly
derive efficient combinations of skeletons from recursive programs. In this sec-
tion, we start by formalizing a very general tree diffusion theorem, then discuss
three practical cases, and finally derive a combination of skeletons for the party
planning problem.

Theorem 1 (Tree Diffusion). Let f be defined in the following recursive way
over binary trees:

f (Leaf n) c = gL (n, c)
f (Node l n r) c = gN (f l (c⊗ hL n)) (n, c) (f r (c⊗ hR n))

where gN is a bi-quasi-associative operator, ⊗ is an associative operator, and
gL, hL, hR are user-defined functions. Then f can be equivalently defined in
terms of the tree skeletons as follows.

f xt c = let ct = dAcc (⊗) (hL, hR) xt c
in reduce (gL, gN) (zip xt ct)

Proof Sketch: This can be proved by induction on the structure of xt . Due to
the limitation of space, the proof is given in the technical report [11]. 2

This theorem is very general. Practically, It is often the case that the function
f returns a tree with the same shape as the input. If we naively apply this diffu-
sion theorem, we will have a costly reduce skeleton for combining all sub-trees.
To remedy this situation, we propose the following two useful specializations, in
which we use appropriate skeletons rather than reduce.

The first specialization deals with the function whose computation of new
values for each node depends on the original value and the accumulation parame-
ter. For each internal node, such a function f can be defined as f (Node l n r) =
Node (f l (c ⊗ hL n)) (gN (n, c)) (f r (c ⊗ hR n)), and this function can be
efficiently computed by map rather than reduce.

Parallelization with Tree Skeletons 5

ppp xt = ppp′ xt True

ppp′ (Leaf n) c = Leaf c
ppp′ (Node l n r) c = let (lm , lu) = mis l

(rm, ru) = mis r
in Node (ppp′ l (if c then False else (lm > lu))) c

(ppp′ r (if c then False else (rm > ru)))
mis (Leaf n) = (n, 0)
mis (Node l n r) = let (lm , lu) = mis l

(rm, ru) = mis r
in (lu + n + ru, (lm ↑ lu) + (rm ↑ ru))

Fig. 2. A sequential program for party planning program

The second specialization deals with the function whose computation of new
values for each node depends on the original value, the accumulation parameter
and the new value of its children. For each internal node, such a function f can
be defined as f (Node l n r) c = Node l′ (gN (root l′) (n, c) (root r′)) r′ where
l′ = f l (c ⊗ hL n) and r′ = f l (c ⊗ hR n). This function can be efficiently
computed by upwards accumulate rather than reduce.

Let us discuss another practical matter for the case where the function f
calls an auxiliary function k to compute over the sub-trees. Such a function can
be defined as follows.

f (Leaf n) c = Leaf (gL ((, n,), c))
f (Node n l r) c = let n′ = (k l, n, k r)

in Node (f l (c⊗ hL n′)) (gN (n′, c)) (f r (c⊗ hR n′))

k (Leaf n) = kL n
k (Node l n r) = kN (k l) n (k r)

It is a little difficult to efficiently parallelize this recursive function into the
combination of primitive skeletons, because there are multiple traversals over
the trees, and naive computation of f will make redundant function calls of k.
By making use of the tupling transformation and the fusion transformation [7],
we can parallelize the function efficiently. In the following, we use a function
gather ch, which accepts two trees of the same shape and makes a triple for each
node. The triple consists of a node of the first tree and two immediate children
of the second tree. Detailed discussions are referred to [11].

Corollary 1 (Paramorphic Diffusion). The function f defined above can be
diffused into the following combination of skeletons if kN is a bi-quasi-associative
operator, and ⊗ is associative.

f xt c = let yt = gather ch xt (uAcc (kL, kN) xt)
in dAcc (⊗) (hL, hR) yt c 2

Having shown the diffusion theorem and its corollaries, we now try to derive
a parallel program for the party planning problem. By making use of dynamic

6 Kiminori Matsuzaki et al.

programming technique, we can obtain an efficient sequential program as shown
in Fig 2. Here, the function mis accepts a tree, and returns a pair of values which
are the maximum independent sums when the root of the input is marked or
unmarked. The recursive function ppp′ is defined with an accumulation parame-
ter, which represents a node to be marked or unmarked. The recursive function
ppp′ is a paramorphic function because it calls an auxiliary function mis on
each sub-tree, therefore, let us use paramorphic diffusion theorem to derive the
following program in terms of skeletons.

ppp xt = ppp′ xt True
ppp′ xt c = let yt = gather ch xt (uAcc (misL,misN) xt)

in dAcc (⊗) (hL, hR) yt c

However, we have not yet parallelized the underlined parts successfully. First,
from the definition of the sequential program, we can derive misL n = (n, 0)
and misN (lm, lu) n (rm, uu) = (lu + n + ru, (lm ↑ lu) + (rm ↑ ru)), however,
we have still to show the bi-quasi-associativity of misN . Second, we have to
derive an associative operator ⊗ and two functions hL and hR such that c ⊗
hL ((lm, lu), n, (rm, ru)) = if c then False else (lm > lu) and almost the same
equation for hR hold. In the following section, we will see how to derive those
operators.

4 Tree Context Preservation

The parallel skeletons require the operators used in them to be (bi-quasi)-
associative, however, it is not straightforward to find such ones for many practi-
cal problems. For linear self-recursive programs, Chin et al. proposed the context
preservation transformation [1], with which one can systematically derive such
operators based on the associativity of function composition. In this section, we
will extend the transformation theorem for tree skeletons. Our main idea is to
resolve the non-linear functions over trees into two linear recursive functions,
and then we can consider the context preservation on these two linear functions.
We start by introducing the basic notations and concepts about contexts.

Definition 4 (Context Extraction [1]). Given an expression E and sub-
terms 〈e1, . . . , en〉, we shall express its extraction by: E =⇒ E′〈e1, . . . , en〉. The
context E′ has a form of λ〈––1, . . . , ––n〉.[ei 7→ ––i]ni=1E, where ––i denotes a new
hole and [ei 7→ ––i]ni=1E denotes a substitution notation of ei in E to ––i. 2

Definition 5 (Skeletal Context [1]). A context E is said to be a skeletal
context if every sub-term in E contains at least one hole. Given a context E,
we can make it into a skeletal one ES by extracting all sub-terms that do not
contain holes. This process shall be denoted by E =⇒S ES〈ei〉i∈N 2

Definition 6 (Context Transformation [1]). A context may be transformed
(or simplified) by either applying laws or unfolding. We shall denote this process
as E =⇒T E′. 2

Parallelization with Tree Skeletons 7

Definition 7 (Context Preservation Modulo Replication [1]). A context
E with one hole is said to be preserved modulo replication if there is a skeletal
context ES , E =⇒S ES〈ti〉 and ES〈αi〉 ◦ ES〈βi〉 = ES〈γi〉 hold, where αi and
βi are variables, and γi are sub-terms without holes. 2

Now, we will discuss about the functions which can be transformed into a
program with uAcc.

Definition 8 (Simple Upwards Recursive Function). A function is said
to be a simple upwards recursive function (SUR-function for short) if it has the
following form.

f (Leaf n) = fL n
f (Node l n r) = fN (f l) n (f r) 2

The inductive case of an SUR-function has two recursive calls, f l and f r,
therefore, we cannot apply the Chin’s theorem. To resolve this non-linearity, we
define the extraction of two linear recurring contexts from an SUR-function, and
extended context preservation for these two contexts as shown in the following.

Definition 9 (Left(Right)-Recurring Context). For the inductive case of
an SUR-function, we can extract the left(right)-recurring context EL (ER) by
abstracting either of the recurring terms: f (Node l n r) = EL〈f l〉 = ER〈f r〉.

2

Definition 10 (Mutually Preserved Contexts). Two linear recurring con-
texts EL, ER are said to be mutually preserved if there exists a skeletal context
ES such that EL =⇒S ES〈gl n r〉, ER =⇒S ES〈gr n l〉 and ES〈α〉 ◦ ES〈β〉 =
ES〈γ〉 hold. Here, γ is a sub-terms computed only with variables α and β. 2

Based on the idea of tree contraction algorithm, we can parallelize the SUR-
function as shown in the following theorem. Due to the limitation of space we
omit the proof, which is given in the technical report [11].

Theorem 2 (Context Preservation for SUR-function). The SUR-function
function f can be parallelized to f = uAcc (fL, fN) if there exist a skeletal
context ES such that EL =⇒S ES〈gl n r〉, ER =⇒S ES〈gr n l〉 and ES〈α〉 ◦
ES〈β〉 = ES〈γ〉 hold. Here, fN is a bi-quasi-associative operator such as fN ≡
[[⊕,⊗, gl, gr]] where x⊕ α = ES〈α〉〈x〉 and β ⊗ α = γ. 2

Next, we discuss about the functions which can be transformed into a pro-
gram with dAcc. As is the case of upwards accumulate, based on the tree con-
traction algorithm, we can parallelize a non-linear function by extracting two
linear contexts and showing these contexts to be mutually preserved. Due to the
limitation of space, we only show the definitions and theorem for this.

Definition 11 (Simple Downwards Recursive Function). A function is
said to be a simple downwards recursive function (SDR-function for short) if it
has the following form.

f (Leaf n) c = Leaf c
f (Node l n r) c = Node (f l (fL c n)) c (f r (fR c n))

2

8 Kiminori Matsuzaki et al.

Definition 12 (Recurring Contexts for SDR-function). For the induc-
tive case of an SDR-function f , we can obtain two recurring contexts DL, DR

by abstracting the recursive calls on the accumulative parameter respectively,
f (Node l n r) c = Node (f l DL〈c〉) c (f r DR〈c〉). 2

Theorem 3 (Context Preservation for SDR-function). The SDR-function
f can be parallelized to f xt c = map ((c⊗), (c⊗)) (dAcc (⊕) (gl, gr) ι⊕) if there
exist a skeletal context ES such that DL =⇒S DS〈gl n〉, DR =⇒S DS〈gr n〉
and DS〈α〉 ◦DS〈β〉 = DS〈γ〉 hold. Here, the operators are defined as β ⊕ α = γ
and c⊗ α = DS〈α〉〈c〉, and ι⊕ is the unit of ⊕. 2

Having shown the context preservation theorems for trees, we now demon-
strate how these theorems work by deriving an associative operator ⊗ and func-
tions hR, hL in the diffused program in Section 3. The corresponding part is
defined recursively as follows.

ppp′ (Node l ((lm, lu), n, (rm, ru)) r) c
= Node (ppp′ l (if c then False else (lm > lu))) c

(ppp′ r (if c then False else (rm > ru)))

From this definition, we can obtain the following two linear recurring contexts
by abstracting recursive calls.

DL = λ〈c〉.if c then False else (lm > lu)
DR = λ〈c〉.if c then False else (rm > ru)

We can show that these two contexts are mutually recursive because the skeletal
context DS = λ〈––1, ––2〉.λ〈c〉.if c then ––1 else ––2 satisfies our requirement.

DL = DS〈gl ((lm, lu), n, (rm, ru))〉, DR = DS〈gr ((lm, lu), n, (rm, ru))〉
where gl ((lm, lu), n, (rm, ru)) = (false, (lm > lu))

gr ((lm, lu), n, (rm, ru)) = (false, (rm > ru))

DS〈α1, α2〉 ◦DS〈β1, β2〉
= λ〈c〉.if c then (if β1 then α1 else α2) else (if β2 then α1 else α2)
= DS〈if β1 then α1 else α2, if β2 then α1 else α2〉

From the derivations above, we can apply theorem 3 to obtain an efficient parallel
program with map and downwards accumulate. The whole parallel program for
the party planning problem is shown in Fig 3. Detailed derivations are referred
to [11].

5 An Experiment

We have conducted an experiment on the party planning problem. We have
coded our algorithm using C++, the MPI library and our implementation of
tree skeletons [10]. We have used a tree of 999,999 nodes for our experiment.

Fig 4 shows the result of the program executed on our PC-Cluster using 1
to 12 processors. This result is shown in the speedup excluding partitioning and
flattening of the tree. The almost linear speedup shows the effectiveness of the
program derived by our theorems.

Parallelization with Tree Skeletons 9

ppp xt = let yt = gather ch xt (uAcc (misL,misN) xt)
in map (fst , fst) (dAcc (¯) (hL, hR) yt ι¯)

where
misL = (n, 0)
misN ≡ [[⊕,⊗, fL, fR]]
(β1, β2, β3, β4)⊕ (α1, α2, α3, α4) = ((β1 + α1) ↑ (β3 + α2),

(β2 + α1) ↑ (β4 + α2), (β1 + α3) ↑ (β3 + α4), (β2 + α3) ↑ (β4 + α4))
(xm, xu)⊗ (α1, α2, α3, α4) = ((xm + α1) ↑ (xu + α2), (xm + α3) ↑ (xu + α4))
fL n (rm, ru) = (−∞, n + ru, rm ↑ ru, rm ↑ ru)
fR n (lm , lu) = (−∞, n + lu , lm ↑ lu , lm ↑ lu)

(β1, β2)¯ (α1, α2) = (if β1 then α1 else α2, if β2 then α1 else α2)
ι¯ = (True, False)
hL ((lm, lu), n, (rm, ru)) = (False, (lm > lu))
hR ((lm, lu), n, (rm, ru)) = (False, (rm > ru))

Fig. 3. Parallel program for party planning problem

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 2 4 6 8 10 12

S
pe

ed
up

Number of Processors

result

Fig. 4. Experiment result

6 Conclusion

In this paper, we have proposed two parallelization transformations, the tree
diffusion transformation and the context preservation transformation, for help-
ing programmers to systematically derive efficient parallel programs in terms of
tree skeletons from the recursive programs. The list versions of these two theo-
rems have been proposed and shown important in skeletal parallel programming,
which once in fact motivated us to see if we could generalize them for trees. Due
to the non-linearity of the tree structures, it turns out to be more difficult than
we had expected. Although the usefulness of our theorems await more evidence,
our successful derivation of the first skeletal parallel program for solving the
party planning problem and the good experiment result have indicated that this
is a good start and is worth further investigation.

10 Kiminori Matsuzaki et al.

We are currently working on generalizing the context preservation theorem
so that we can relax conditions of the skeletons. In addition, we are figuring out
whether we can automatically parallelize the recursive programs on trees.

References

1. W.N. Chin, A. Takano, and Z. Hu. Parallelization via context preservation. IEEE
Computer Society International Conference on Computer Languages (ICCL’98),
pages 153–162, May 1998.

2. M. Cole. Parallel programming, list homomorphisms and the maximum segment
sum problems. Report CSR-25-93, Department of Computing Science, The Uni-
versity of Edinburgh, May 1993.

3. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, second edition, 2001.

4. J. Gibbons. Algebras for Tree Algorithms. PhD thesis, Programming Research
Group, Oxford University, 1991. Available as Technical Monograph PRG-94.

5. J. Gibbons. Computing downwards accumulations on trees quickly. In G. Gupta,
G. Mohay, and R. Topor, editors, Proceedings of 16th Australian Computer Science
Conference, volume 15 (1), pages 685–691. Australian Computer Science Commu-
nications, February 1993.

6. S. Gorlatch. Systematic efficient parallelization of scan and other list homomor-
phisms. In Annual European Conference on Parallel Processing, LNCS 1124, pages
401–408, LIP, ENS Lyon, France, August 1996. Springer-Verlag.

7. Z. Hu, H. Iwasaki, and M. Takeichi. Construction of list homomorphisms by tu-
pling and fusion. In 21st International Symposium on Mathematical Foundation of
Computer Science, LNCS 1113, pages 407–418, Cracow, September 1996. Springer-
Verlag.

8. Z. Hu, M. Takeichi, and H. Iwasaki. Diffusion: Calculating efficient parallel pro-
grams. In 1999 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation (PEPM ’99), pages 85–94, San Antonio, Texas, Jan-
uary 1999. BRICS Notes Series NS-99-1.

9. S. Peyton Jones and J. Hughes, editors. Haskell 98: A Non-strict, Purely Functional
Language. Available online: http://www.haskell.org, February 1999.

10. K. Matsuzaki, Z. Hu, and M. Takeichi. Implementation of parallel tree skeletons on
distributed systems. In Proceedings of The Third Asian Workshop on Programming
Languages And Systems, pages 258–271, Shanghai, China, 2002.

11. K. Matsuzaki, Z. Hu, and M. Takeichi. Parallelization with tree skeletons. Technical
Report METR 03-21, Mathematical Informatics, Graduate School of Information
Science and Technology, University of Tokyo, 2003.

12. M. Reid-Miller, G. L. Miller, and F. Modugno. List ranking and parallel tree
contraction. In John H. Reif, editor, Synthesis of Parallel Algorithms, chapter 3,
pages 115–194. Morgan Kaufmann Publishers, 1996.

13. D. B. Skillicorn. Foundations of Parallel Programming. Cambridge University
Press, 1994.

14. D. B. Skillicorn. Parallel implementation of tree skeletons. Journal of Parallel and
Distributed Computing, 39(2):115–125, 1996.

