
Towards Automatic Parallelization of Tree Reductions
in Dynamic Programming

Kiminori Matsuzaki
kmatsu@ipl.t.u-tokyo.ac.jp

Zhenjiang Hu
hu@mist.i.u-tokyo.ac.jp

Masato Takeichi
takeichi@mist.i.u-tokyo.ac.jp

Graduate School of Information Science and Technology
University of Tokyo

7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, JAPAN

ABSTRACT
Tree contraction algorithms, whose idea was first proposed
by Miller and Reif, are important parallel algorithms to im-
plement efficient parallel programs manipulating trees. De-
spite their efficiency, the tree contraction algorithms have
not been widely used due to the difficulties in deriving the
tree contracting operations. In particular, the derivation of
the tree contracting operations is much difficult when mul-
tiple values are referred and updated in each step of the
contractions. Such computations often appear in dynamic
programming problems on trees.

In this paper, we propose an algebraic approach to deriv-
ing tree contraction programs from recursive tree programs,
by focusing on the properties of commutative semirings. We
formalize a new condition for implementing tree reductions
with the tree contraction algorithms, and give a systematic
derivation of the tree contracting operations. Based on it,
we implemented a code generator for tree reductions, which
has an optimization mechanism that can remove unneces-
sary computations in the derived parallel programs. As far
as we are aware, this is the first step towards an automatic
parallelization system for the development of efficient tree
programs.

Categories and Subject Descriptors
D.1.3 [Programming Languages]: Concurrent Program-
ming—parallel programming ; D.3.4 [Programming Lan-
guages]: Processors—code generation, optimization

General Terms
Experimentation, Theory

Keywords
Code generator, commutative semiring, dynamic program-
ming, parallel programming, parallel tree contraction, tree

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’06, July 30–August 2, 2006, Cambridge, Massachusetts, USA.
Copyright 2006 ACM 1-59593-262-3/06/0007 ...$5.00.

1. INTRODUCTION
In recent years, parallel computing has been getting widely

available due to faster and cheaper computers and networks.
In scientific parallel computing, regular data structures such
as arrays and matrices have been intensively used, and many
parallel algorithms and compilation techniques have been
developed for these structures. In this paper, we focus on
trees, a fundamental data structure widely used in repre-
senting general structured data such as XML. As XML is
becoming popular, users have their huge data in the form
of XML trees, and this situation calls for efficient parallel
manipulations of trees.

Developing efficient parallel tree programs is, however, a
hard task for programmers because of the ill-balanced struc-
ture of trees. In sequential programming, we write programs
manipulating trees with recursive functions. For example,
we may write the following recursive program for computing
the sum of all nodes in a tree.

sum_tree(node n) {

if (n.is_leaf()) {

return n.v;

} else {

return n.v + sum_tree(n.l)

+ sum_tree(n.r);

}

}

In parallel programming, we have to identity computations
that can be performed in parallel. As the two recursive
calls of sum_tree are independent, we may transform this
recursive program into a parallel program of the divide-and-
conquer style, but the divide-and-conquer program will show
poor performance when the input trees are ill-balanced. In
addition, we can hardly apply the compilation techniques
developed for arrays and matrices, since they work only on
loops not on recursive functions.

Fortunately, there is a powerful approach called tree con-
traction algorithms, first proposed by Miller and Reif [25],
which plays an important role in designing efficient parallel
programs for trees. The main advantage of the tree con-
traction algorithms is that the algorithms can always run
efficiently in parallel regardless the shape of the input trees.
There have been many studies on implementing tree con-
traction algorithms, on shared memory environments [9, 1,
3], and on distributed memory environments [23, 24, 11].

In spite of a few studies [27, 20] on systematic development

(derivation) of parallel tree contraction programs, develop-
ing tree contraction programs is still a hard task. To see
this, consider a famous dynamic programming problem on
trees called “party planning problem” [10].

The president of a company wants to have a com-
pany party. To make the party fun for all atten-
dees, the president does not want both an em-
ployee and his or her direct supervisor to attend.
The company has a hierarchical structure, that
is, the supervisory relations form a tree rooted at
the president, and the personnel office has rating
each employee with a conviviality rating of a real
number. Given the structure of the company and
the ratings of employees, the problem is to mark
the guests so that the sum of the conviviality
ratings of marked guests is its maximum.

To simplify the problem, we assume that the given structure
is a binary tree, and compute the maximum sum of the
marked guests’ ratings. As discussed in [10], we can solve the
program by dynamic programming, and write a sequential
program in the following recursive way.

max_sum(node n) {

if (n.is_leaf()) {

return pair(n.v,0);

} else {

(l1, l2) = max_sum(n.l);

(r1, r2) = max_sum(n.r);

return pair(n.v+l2+r2,

max(l1,l2) + max\(r1,r2));

}

}

In this program, two values are computed at the same time:
the first value (e.g., l1) is the maximum sum of marked
guests’ ratings when the root node of the subtree is marked;
the second value (e.g., l2) is the maximum sum of marked
guests’ ratings when the root node is not marked. These
simultaneous computations of values make the derivation of
tree contraction programs much difficult.

In this paper, we propose an algebraic approach to deriv-
ing tree contraction programs from recursive tree programs,
by focusing on the properties of commutative semirings. We
formalize a condition called tupled-ring property to apply the
tree contraction approach to the recursive functions with
multiple parameters, and show how we can derive tree con-
traction programs by using this property. We implemented a
code generator for translating users’ recursive programs into
the parallel C++ code based on the derivation algorithm.

The contributions of this paper are summarized as follows.

• We utilized the properties of algebraic semirings for
deriving parallel programs. So far, associativity and
commutativity have been discussed for deriving par-
allel programs. In this paper, we show distributivity
also plays an important role in deriving tree contract-
ing operations.

• We formalize a new condition for the dynamic pro-
grammings on trees and develop an algorithm for de-
riving the tree contraction programs. Several works
gave the conditions for deriving parallel programs, but
they did not show how the desired parallel programs

can be systematically obtained from the sequential def-
initions. In contrast, we not only formalize the condi-
tion for applying the tree contraction algorithms, but
also developed a systematic method for deriving actual
tree contraction programs.

• We implemented a semi-automated code generator that
translates users’ annotated recursive (sequential) pro-
grams into parallel C++ codes. This system also im-
plements an optimization mechanism that can remove
unnecessary computations that may be included when
we parallelize the programs.

The paper is organized as follows. In Section 2, we in-
troduce the datatype of binary trees and a general recursive
computational pattern called tree reductions, and then re-
view the parallel tree contraction algorithms. In Section 3,
we formalize a condition for parallelizing recursive functions
based on the properties of commutative semirings, and show
the tree contraction programs can be systematically derived
from users’ recursive programs. In Section 4, we illustrate
our code generation system using a non-trivial example of
an XPath query. We discuss related work in Section 5, and
conclude the paper in Section 6.

2. PRELIMINARIES

2.1 Trees and Tree Reductions
In this paper, we only consider binary trees. A node has

two pointer variables, l and r, which indicate the left and the
right child nodes respectively, together with other variables
showing information associated to the node (e.g., v). To
distinguish leaf nodes from internal nodes, we use function
is_leaf(). In this paper, we borrow a lot of notations of
classes in C++ or Java. For instance, we describe the left
child of a node n as n.l.

Generally speaking, algorithms over recursive data struc-
tures are often defined recursively along with the definition
of the structures. In the case of binary trees, many tree al-
gorithms are specified in the following recursive form, which
is called tree reductions (or tree homomorphisms) [32].

Definition 1. (Tree Reduction) A function f is called tree
reduction if it is defined with two functions kl and kn in the
following form.

f(node n) {

if (n.is_leaf()) {

return kl(n.v);

} else {

return kn(n.v, f(n.l), f(n.r));

}

}

We denote a tree reduction as red(kl, kn).

The function sum_tree in the introduction is a tree re-
duction red(st l, stn), where the two functions are defined
as follows. In the following of the paper, we describes the
functions as mathematical equations.

st l(v) = v
stn(v, l, r) = v + l + r

The function max_sum in the introduction is also a tree re-
duction red(msl,msn).

msl(v) = (v, 0)
msn(v, (l1, l2), (r1, r2))

= (v + l2 + r2,max (l1, l2) + max(r1, r2))

2.2 Tree Contraction Algorithms
The tree contraction algorithms are very important par-

allel algorithms for efficient tree manipulations. The idea
was first introduced by Miller and Reif [25], and later ex-
tended with an optimal and practical algorithm on EREW
PRAM developed by Abrahamson et al. [1]. Furthermore,
implementations on hypercubes and related networks have
been developed [23, 24].

The original tree contraction algorithm consists of two
primitive operations called rake and compress. The rake
operation merges a leaf with its parent, and the compress
operation merges an internal node that has only one child
with its child. Several tree contraction algorithms have been
developed under the assumption of binary trees. The shunt
contraction algorithm developed by Abrahamson et al. [1]
uses two symmetric operations instead, namely contractL
and contractR, which are successive calls of the rake oper-
ation followed by the compress operation. The contractL
operation is applied to a node whose left child is a leaf, and
removes two nodes and two edges from the tree as shown
in Figure 1. The contractR operation is symmetric to the
contractL operation.

Tree contraction algorithms change the order of compu-
tations from that of sequential algorithms, and thus some
conditions are required to guarantee the correctness of com-
putations. For tree reduction red(kl, kn), a sufficient condi-
tion is existence of four auxiliary functions φ, ψL, ψR, and
G satisfying the following closure property on G.

kn(v, l, r) = G(φ(v), l, r)

G(v, l, G(v′, l′, r′)) = G(ψL(v, l, v′), l′, r′)

G(v, G(v′, l′, r′), r) = G(ψR(v, r, v′), l′, r′)

The first equation says that the function for internal nodes,
kn can be written by an auxiliary function G, which satisfies
the following two equations. The latter two equations give
the closure property of G with two auxiliary functions ψL

and ψR. If one can develop these four auxiliary functions,
then he or she can implement a tree contraction program as
shown in Figure 2.

It is worth noting that this condition specifies the equiva-
lent class of acceptable reductions as that of Abrahamson et
al. [1], which is given as a closure property on unary func-
tions. We use the condition above in this paper since the
condition is more intuitive for the shunt contraction algo-
rithm as the latter two equations exactly correspond to the
two contracting operations, namely the contractL and con-
tractR operations.

3. TUPLED-RING PROPERTY
In this section, we give a condition to apply the tree con-

traction to the reductions that compute multiple values si-
multaneously. The key idea is to utilize algebraic properties
of commutative semirings that the functions have. We also
show how we can systematically derive the tree contraction
programs from the recursive sequential programs.

a

b c

d e

c′

d e

contractL

Figure 1: The contractL operation.

1. Number the leaves from left to right starting from 0.

2. Apply φ to each internal node and kl to each leaf.

3. Iterate (a)–(c) until one leaf remains.

(a) For every internal node whose left child is an
even-numbered leaf, apply contractL with func-
tion G if the right child is a leaf or with function
ψL if the right child is an internal node.

(b) For every internal node that was not involved in
the previous step, and whose right child is an
even-numbered leaf, apply contractR with func-
tion G or ψR.

(c) Renumber leaves by dividing their number by 2.

Figure 2: Shunt contraction algorithm.

First we define commutative semirings.

Definition 2. An algebra A = {D, ⊕,⊗} is said to be a
commutative semiring, if D is the carrier, ⊕ is an associative
and commutative operator with unit ι⊕, and ⊗ is an associa-
tive and commutative operator with unit ι⊗ and distributes
over ⊕.

Three examples of commutative semirings are

{Num, +,×},
{Num, ↑, +}, and
{Bool,∨,∧}

where the operator ↑ denotes the max function that returns
the bigger of the two inputs. The latter two commutative
semirings are often seen in dynamic programmings.

Next, we define a class of functions on these commutative
semirings. For some finite k, Dk denotes a set of finitely
tupled values (v1, v2, . . . , vk) where vi ∈ D.

Definition 3. Let {D,⊕,⊗} be a commutative semiring.
Function g :: Dk → D is said to be a linear polynomial
function, if it can be defined in the following form:

g (x1, x2, . . . , xk)
= (a1⊗x1) ⊕ (a2⊗x2) ⊕ · · · ⊕ (ak⊗xk) ⊕ ak+1

where a1, a2, . . . , ak and ak+1 are constants.

The function for internal nodes in a tree reduction takes
two sets of recursive results from the left child and the right
child. For example, the function msn in Section 2.1 takes
(l1, l2) and (r1, r2). Therefore, we specify a class of func-
tions that take two sets of values on an analogy of linear
polynomial functions.

Definition 4. (Bi-linear Polynomial Function) Let A be a
domain and {D,⊕,⊗} be a commutative semiring. Function
g :: (A,Dk,Dk) → D is said to be a bi-linear polynomial
function, if it can be defined in the following two forms:

g (v, (l1, l2, . . . , lk), (r1, r2, . . . , rk))
= (a1 ⊗ l1) ⊕ (a2 ⊗ l2) ⊕ · · · ⊕ (ak ⊗ lk) ⊕ ak+1

= (b1 ⊗ r1) ⊕ (b2 ⊗ r2) ⊕ · · · ⊕ (bk ⊗ rk) ⊕ bk+1

where a1, a2, . . . , ak and ak+1 are values computed only from
r1, r2, . . . , rk and v; b1, b2, . . . , bk and bk+1 are values com-
puted only from l1, l2, . . . , lk and v.

Note that the class of the bi-linear polynomial functions is
broader than that of the linear functions with respect to all
the arguments. For example, the following function g

g(v, (l1), (r1)) = l1 ⊗ r1

is a bi-linear polynomial function but not a linear polynomial
function with respect to l1 and r1.

In this paper, we deal with the reductions whose func-
tion for internal nodes is defined with k bi-linear polyno-
mial functions. In the following of this section, we use the
function msn for the party planning problem as our running
example.

msn(v, (l1, l2), (r1, r2))

=

„

v + l2 + r2

(l1 ↑ l2) + (r1 ↑ r2)

«

Let msn1 and msn2 be functions that computes the first and
second results of the function msn. These two functions are
indeed bi-linear polynomial functions as seen in the following
transformations. Note that −∞ is the unit of operator ↑,
and is the zero-element on {Num, ↑, +}.

msn1(v, (l1, l2), (r1, r2))
= (−∞ + l1) ↑ ((v + r2) + l2) ↑ −∞
= (−∞ + r1) ↑ ((v + l2) + r2) ↑ −∞

msn2(v, (l1, l2), (r1, r2))
= ((r1 ↑ r2) + l1) ↑ ((r1 ↑ r2) + l2) ↑ −∞
= ((l1 ↑ l2) + r1) ↑ ((l1 ↑ l2) + r2) ↑ −∞

We have observed several examples that can be paral-
lelized by the tree contraction algorithms (some examples
are in [21]), and would like to conjecture that a reduction
algorithm red(kl, kn) could be parallelized by the tree contrac-
tion algorithms, if the function kn is defined with a set of
bi-linear polynomial functions. In the rest of this section,
we will show that this conjecture is true by deriving all four
auxiliary functions from the definition of the function kn.

The key idea is that the set of linear polynomial func-
tions can be represented with matrices and matrix multi-
plications. The set of k bi-linear polynomial functions are
formalized as the following (k+1)-dimensional matrix mul-
tiplications on the semiring {D,⊕,⊗}. Let x1, x2, . . . , xk be
results of function kn, that is,

(x1, x2, . . . , xk) = kn(v, (l1, l2, . . . , lk), (r1, r2, . . . , rk))

then we can formalize the computation of kn as the following
(k+1)-dimensional matrix multiplications on the commuta-
tive semiring {D,⊕,⊗}. For readability, we may denote a
tuple as a column vector.

v

l r

M×

Figure 3: Intuitive meaning of G and the assigned
values v and M. At the internal node we compute
kn(v, l, r) followed by the multiplication of M.

(x1, . . . , xk, ι⊗)T

=

0

B

B

B

@

a11 · · · a1k a1(k+1)

...
. . .

...
...

ak1 · · · akk ak(k+1)

ι⊕ · · · ι⊕ ι⊗

1

C

C

C

A

×⊗,⊕

0

B

B

B

@

l1
...
lk
ι⊗

1

C

C

C

A

=

0

B

B

B

@

b11 · · · b1k b1(k+1)

...
. . .

...
...

bk1 · · · bkk bk(k+1)

ι⊕ · · · ι⊕ ι⊗

1

C

C

C

A

×⊗,⊕

0

B

B

B

@

r1

...
rk

ι⊗

1

C

C

C

A

In the following, we denote the matrices and tupled val-
ues in the bold font such as M or l, and × for the ma-
trix multiplication. By using this matrix notation, we can
rephrase the condition for the tree contraction algorithms.
Let l = (l1, l2, . . . , lk)T , r = (r1, r2, . . . , rk)T , gr(v, r) be the
matrix of {aij} above, and gl(v, l) be the matrix of {bij}.
With the two functions gl and gr, we can specify the condi-
tion simply as follows.

„

kn(v, l, r)
ι⊗

«

= gr(v, r) ×
„

l
ι⊗

«

„

kn(v, l, r)
ι⊗

«

= gl(v, l) ×
„

r
ι⊗

«

For our running example, msn, we can derive the functions
gl and gr as follows straightforwardly from the definition of
bi-linear polynomial functions.

gl

„

v,

„

l1
l2

««

=

0

@

−∞ v + l2 −∞
l1 ↑ l2 l1 ↑ l2 −∞
−∞ −∞ 0

1

A

gr

„

v,

„

r1

r2

««

=

0

@

−∞ v + r2 −∞
r1 ↑ r2 r1 ↑ r2 −∞
−∞ −∞ 0

1

A

We now develop the four auxiliary functions from the
functions kn, gr, and gl given in the matrix representation.
We assign for each node the original value of the node v
and a (k+1)-dimension matrix M, and define the auxiliary
function G as the following equation.

„

G((v,M), l, r)
ι⊗

«

= M×
„

kn(v, l, r)
ι⊗

«

An intuitive meaning of G is illustrated in Figure 3.
As discussed in Section 2, a condition for the tree con-

traction algorithms is given by three equations. After the
substitution of (v,M) to v, the first equation is given as

kn(v, l, r) = G(φ(v), l, r)

v

v′l

l′ r′

M×

M×

v′

l′ r′

M × gr(n, l)×
M ′×contractL

Figure 4: Contracting operation on matrix notation.

and by simple calculations with the definition of G, we ob-
tain the definition of φ:

φ(v) = (v, I)

where I is the identity matrix of (k+1)-dimension. The
identity matrix is a matrix whose diagonal elements have
value ι⊗ and the other elements have value ι⊕.

Next, we derive the auxiliary functions for the contracting
operation, ψL and ψR, from the latter two equations in the
conditions of the tree contraction. When the left child is a
leaf we apply the contractL operation, for which we require
the following equation on auxiliary functions.

G((v,M), l, G((v′,M′), l′, r′))

= G(ψL((v,M), l, (v′,M′)), l′, r′)

We calculate the left-hand side as follows.
„

G((v,M), l, G((v′,M′), l′, r′))
ι⊗

«

= {Definition of G}

let

„

r
ι⊗

«

= M′ ×
„

kn(v′, l′, r′)
ι⊗

«

in M ×
„

kn(v, l, r)
ι⊗

«

= {Application of gl to the parent}

M × gl(v, l) × M′ ×
„

kn(v′, l′, r′)
ι⊗

«

= {Associativity of ×, and definition of G}
„

G((v′,M× gl(v, l) × M′), l′, r′)
ι⊗

«

From the calculations above, we obtain the definition of the
auxiliary function ψL as follows, whose intuitive meaning is
shown in Figure 4.

ψL((v,M), l, (v′,M′)) = (v′,M × gl(v, l) × M′)

Symmetric to ψL, we can derive the auxiliary function ψR

as follows.

ψR((v,M), r, (v′,M′)) = (v′,M× gr(v, r) ×M′)

We have successfully derived all the auxiliary functions
for the tree contraction algorithms, φ, ψL, ψR, and G, and
now summarize the discussion as the following theorem.

Theorem 1. Let kl be a function and kn be a function
defined with a set of bi-linear functions. Reduction algorithm
red(kl, kn) can be parallelized by using the tree contraction
algorithms.

Proof. We can derive the auxiliary functions from the
function kn as discussed so far, and these auxiliary func-
tions guarantee the parallel computation based on the tree
contraction algorithms.

For our running example, we can derive the four auxil-
iary functions for the tree contraction algorithms as shown
in Figure 5, by simply substituting the definitions of I, gl,
etc. to those in the results of the derivation so far. We omit-
ted the elements on the third column and the elements on
the third row, since they do not change their values through-
out the tree contracting computation. We discuss how we
can automatically remove these values in the following sec-
tion.

4. CODE GENERATOR
The tupled-ring property in the previous section gives a

clear condition for parallelizing reductions with multiple pa-
rameters, but developing suitable functions is somehow te-
dious due to the large number of parameters introduced in
the matrices.

To encourage programmers to develop parallel programs
based on the tupled-ring property, we have developed a pro-
totype system that automatically translates users’ recursive
specifications into parallel C++ codes. In this section, we
describe the outline of our code generator, and then demon-
strate the parallelization steps with a non-trivial example.

4.1 Outline of Code Generator
Figure 6 depicts the outline of our code generator. It takes

recursive functions written in C++ like notation with some
annotations for its input (Figure 10). This notation includes
not only operations and functions but also if-statements.
We introduced a notation for tuples to enable users to write
concisely tree algorithms computing multiple values. We
ask users to specify the properties among operators (i.e.,
commutative semirings) as annotations. For example, users
should specify the operators and the units that construct a
commutative semiring as shown in the first line in Figure 10.

Our code generator first splits the specification into two
parts corresponding to two cases for leaves and for inter-
nal nodes by finding if-statement with the predicate of
is_leaf(). The system then transforms the definition for
internal nodes into the canonical forms to generate the ma-
trices for functions gl and gr. This canonicalization is per-
formed in the following three steps.

1. We expand the expressions by using the distributive
law x ⊗ (b ⊕ c) = (x ⊗ b) ⊕ (x ⊗ c). Note that the
if-statement distributes over any operations.

2. We flatten the expression with the associative law, and
sort the arguments with the commutative law.

3. We put sub-expressions together for each argument by
using the distributive law in the reversed direction.
Here if there is no occurrence of an argument xi, then
we insert (ι⊕ ⊗ xi) that is equal to ι⊕.

After canonicalization, the system checks whether each ex-
pression is a linear function, and generates the matrices for
two functions gl and gr.

After deriving the matrices, the system proceeds into the
optimization phase. In the optimization phase, the system
abstracts the values to four values Z, I, C and V:

φ(v) =

„

v,

„

0 −∞
−∞ 0

««

ψL

„„

v,

„

a11 a12

a21 a22

««

,

„

l1
l2

«

,

„

v′,

„

a′
11 a′

12
a′
21 a′

22

«««

=

„

v′,

„

a11 a12

a21 a22

«

×
„

−∞ v + l2
l1 ↑ l2 l1 ↑ l2

«

×
„

a′
11 a′

12
a′
21 a′

22

««

ψR

„„

v,

„

a11 a12

a21 a22

««

,

„

r1

r2

«

,

„

v′,

„

a′
11 a′

12
a′
21 a′

22

«««

=

„

v′,

„

a11 a12

a21 a22

«

×
„

−∞ v + r2

r1 ↑ r2 r1 ↑ r2

«

×
„

a′
11 a′

12
a′
21 a′

22

««

G

„„

v,

„

a11 a12

a21 a22

««

,

„

l1
l2

«

,

„

r1

r2

««

=

„

a11 a12

a21 a22

«

×
„

v + l2 + r2

(l1 ↑ l2) + (r1 ↑ r2)

«

Figure 5: The definition of contracting operations for the party planning problem. The operator × is the
matrix multiplication on the commutative semiring {Num, ↑, +}.

User’s specification in C++ like notation

Splitter

code for leaves code for internal nodes

Normalization

matrices for gl and gr
Optimization

Mechanism

variables’ usage

Program Generator

C++ code for function definitions

Figure 6: Outline of our code generator.

• a Z element denotes the zero-element of the commuta-
tive semiring (= ι⊕);

• an I element denotes the identity-unit of the commu-
tative semiring (= ι⊗);

• a C element denotes a constant value;

• a V element denotes a non-constant value.

First, the system compares the corresponding values in the
matrices for gl, gr and the identity matrix, and generates
an initial matrix for the analysis. In this initial matrix, the
V elements denote that the values on the positions are re-
quired to the tree contraction algorithms. The system then
simulates the computations of the tree contracting opera-
tions, by squaring the matrix using the operators given in
Figure 7 until the matrix does not change. Computations
in squaring have different semantics from original ⊕ and ⊗:
for example, on the original algebra Z ⊗ O = Z holds, but
in the optimization phase we consider Z ⊗′ O = V since the
inputs and the output differ. Note that the iteration termi-
nates, since during the squaring the matrix the value may
change only to V, and once an element has the value V then
the value never changes any more. In the result matrix,

⊕′ Z I C V

Z Z I C V

I I V V V

C C V V V

V V V V V

⊗′ Z I C V

Z Z V V V

I V I C V

C V C V V

V V V V V

Figure 7: Semantics of two operations on four val-
ues.

the value V indicates that the element should be computed
through the tree contraction because the value may change;
and the other values denote that the elements do not change
through the tree contractions and we can remove them by
substituting the values to the variables. If the value is Z or I
then we can furthermore remove the computations as well.
Thus, this optimization can reduce the computation time as
well as the memory space during the tree contractions.

The system finally generates the code of parallel pro-
grams. Since tree contraction algorithms have quite different
implementations on various parallel environments, it is un-
realistic to generate the program code specific to each lower-
level architecture. The system, therefore, generates the code
for the parallel tree skeletons in the SkeTo library [19]. The
parallel tree skeletons abstract the lower-level tree contrac-
tion algorithms and we can obtain a reasonably fast parallel
code by supplying the definition of parameter functions of
the skeletons. The system generates C++ code for the def-
inition of tuples, the function objects for kl, kn, φ, ψL, ψR

and G.

4.2 Example: Parallelizing XPath Queries
In this section, we demonstrate our code generator with

a nontrivial application, namely parallelization of XPath
queries. XPath query [5] is one of the core processings in the
XSLT [17] and XQuery [6], which is widely used in process-
ing XML trees. As our running example, we will generate a
parallel code for the following XPath query.

//a[./b/following-sibling::c]

This XPath query searches a node labeled a that has children
labeled b and c in this order from left (Note that other
children may appear).

Since XML tree is a general tree whose internal nodes may
have an arbitrary number of children, we need to represent
a XML tree as a binary tree. Here, we use a binary-tree
representation illustrated in Figure 8 [10]. In this binary-
tree representation, the left child and the right child of a
node denote the left-most child and the right sibling in the
original XML tree, respectively.

a

b c d

e f

a

b

c

d
e

f

Figure 8: Binary-tree representation of XML tree.

S S0 S1 S2

ch

sib

c

sib

b(sib)

sib

a(sib)

ch

sib

Figure 9: A nondeterministic automaton for the
sample XPath query. Transition labeled x(ch) oc-
curs if the child has the original state and the node
has value x. Transition labeled x(sib) shows the case
of sibling.

It is known that an XPath query can be translated into
an automaton [29]. In the case of our running example,
the XPath query is performed by matching the nondeter-
ministic finite automaton shown in Figure 9 to the path
from each node to the root. By using dynamic programming
technique, we can write a recursive program that performs
the XPath query by computing three variables v0, v1 and
v2 (Figure 10), which respectively correspond to the three
states S0, S1 and S2 in Figure 9.

Now we demonstrate how the system generates a parallel
program from the input sequential program based on the
tupled-ring property.

The system first splits the definitions for leaves and inter-
nal nodes, and parses the definition for internal nodes. In
this analysis, the system generates an abstract syntax tree
corresponding to the following segment of program.

//semiring (bool, ||, &&, false, true)

//recursion (l0, l1, l2) (r0, r1, r2)

//node v

//results (v0, v1, v2)

v0 = r0 || (v == ’c’)

v1 = ((v == ’b’) && r0) || r1

v2 = ((v == ’a’) && l1) || l2 || r2

The system then normalizes the abstract syntax tree for
each equation into the canonical forms. Here, let us consider
normalizing the equation of v2 for the parameters r0, r1 and
r2. At the first phase, the system applies the distributive law
to expand all the parts related to the parameters. For the
equation of v2 the system does nothing, since the operator
&& is inside of ||. The system then sorts the subexpressions
with respect to the arguments r0, r1 and r2.

v2 = ((v == ’a’) && l1) || l2 || r2

= r2 || ((v == ’a’) && l1) || l2

Finally, the system applies the distributive law in the re-
versed direction. For the arguments r0 and r1, there are no
occurrences of the arguments and thus the system inserts a
special value ZERO representing ι⊕ with the arguments. For
the argument r2, there is no coefficient and thus the system
inserts a special value ONE representing ι⊗. Therefore, the
system transforms the equation as follows.

v2 = r2 || ((v == ’a’) && l1) || l2

= (ZERO && r0)

(ZERO && r1) ||

(ONE && r2) ||

(((v == ’a’) && l1) || l2)

After normalizing all the expressions with respect to the
parameters r0, r1 and r2, we obtain the following 4 × 4
matrix for the function gl.

ONE ZERO ZERO (v==’c’)

(v==’b’) ONE ZERO ZERO

ZERO ZERO ONE ((v==’a’)&&l1)||l2

ZERO ZERO ZERO ONE

In the same way, we obtain the following matrix for the
function gr.

ZERO ZERO ZERO r0||(v==’c’)

ZERO ZERO ZERO ((v=’b’)&&r0)||r1

ZERO (v==’a’) ONE r2

ZERO ZERO ZERO ONE

Of course, the identity matrix is given as follows.

ONE ZERO ZERO ZERO

ZERO ONE ZERO ZERO

ZERO ZERO ONE ZERO

ZERO ZERO ZERO ONE

By comparing these three matrices, the system generates
a matrix for the optimization phase. In this comparison, if
all the corresponding values are ZEROs the value in the gen-
erated matrix becomes Z, and if the corresponding values are
different the value in the generated matrix becomes V even if
values are Z or I. Of course, if an element has variables such
as v, l0 and r0, then the corresponding element necessarily
becomes V. For our example, we obtain the following matrix
as the initial matrix of the optimization phase.

V Z Z V

V V Z V

Z V I V

Z Z Z I

In the optimization phase, the system iterates squaring the
matrix until the same matrix appears, and the calculation
yields the following results.

V Z Z V V Z Z V V Z Z V

V V Z V --> V V Z V --> V V Z V

Z V I V V V I V V V I V

Z Z Z I Z Z Z I Z Z Z I

The last matrix above has eight V elements, and indicates
that we need those eight elements in the computations of
tree contracting operations. The other values can be re-
moved from the generated parallel code, and thus we can
reduce the number of variables to a half by this optimiza-
tion.

// semiring(bool, ||, &&, false, true);

tuple<bool> xpquery(node< char > n) {

if (n.is_leaf()) {

return (false, false, false);

} else {

tuple<bool> (l0, l1, l2) = xpquery(n.l);

tuple<bool> (r0, r1, r2) = xpquery(n.r);

bool v0 = r0 || (n.v == ’c’);

bool v1 = ((n.v == ’b’) && r0) || r1;

bool v2 = ((n.v == ’a’) && l1) || l2 || r2;

return (v0, v1, v2);

}

}

Figure 10: A sample code of input specification.

struct xpquery_inter_val

{

char v; bool a_0_0, a_0_3, a_1_0, a_1_1, a_1_3, a_2_0, a_2_1, a_2_3;

xpquery_inter_val() {

a_0_0 = true; a_0_3 = false; a_1_0 = false; a_1_1 = true;

a_1_3 = false; a_2_1 = false; a_2_0 = false; a_2_3 = false;

}

};

...

struct xpquery_psi_L {

xpquery_inter_val operator()(xpquery_inter_val n, xpquery_ret_val l, xpquery_inter_val r) {

xpquery_inter_val res;

char v = n.v;

res.a_0_0 = n.a_0_0 && r.a_0_0;

res.a_0_3 = (n.a_0_0 && (r.a_0_3 || (v == ’c’))) || n.a_0_3;

res.a_1_0 = (n.a_1_1 && r.a_1_0) || (((n.a_1_1 && (v == ’b’)) || n.a_1_0) && r.a_0_0);

....

res.v = r.v;

return res;

}

};

...

/* in user’s code */

ret_val n = tree_skeletons::reduce(

xpquery_leaf(), xpquery_node(), xpquery_phi(),

xpquery_psi_L(), xpquery_psi_R(), xpquery_G(), tree);

Figure 11: Segments of generated code for the sample XPath query.

The system finally generates the parallel program in C++
code. The system first generates the definition of structures
for result tuples and for internal contraction steps based on
the matrix obtained so far. In our running example, the
structure for result tuples xpquery_ret_val has three vari-
ables v0, v1 and v2, and the structure for the contraction
xpquery_inter_val has eight values corresponding to the V

elements. The system then generates the definition of func-
tion objects for functions kl and kn and auxiliary functions
φ, ψL, ψR, and G, from the definition of leaf’s case and
the two matrices of internal node’s case. Segments of the
generated code are shown in Figure 11.

5. RELATED WORK

Tree Contraction Algorithms
Tree contraction algorithms, whose idea was first proposed
by Miller and Reif [25], are very important parallel algo-

rithms for trees. Many researchers have devoted themselves
to developing efficient implementations on various parallel
models [1, 3, 4, 9, 13, 23, 24]. Among them, Gibbons
and Rytter developed an cost-optimal algorithm on CREW
PRAM [13]; Abrahamson et al. developed an cost-optimal
and practical algorithm on EREW PRAM [1]; Miller and
Reif showed implementations on hypercubes or related net-
works [23, 24]. The parallel programs derived based on the
tupled-ring property can be implemented with all of them.

A lot of tree programs have been described by the tree
contraction algorithms [4, 9, 13, 15, 20, 26, 27, 28]. Many of
these programs, however, compute a single value instead of
tupled values at each contraction step. For example, Cole
and Vishkin [9] and He [15] developed parallel algorithms
based on the finiteness of the domain, e.g. for the mini-
mum covering-set problem and the maximum independent-
set problem. Though the maximum independent-set prob-
lem is a simpler version of the party planning problem, their

approaches are not applicable to development of parallel pro-
grams of the party planning problem. Miller and Teng [27]
proposed a method for developing parallel programs on com-
putational trees with min and max functions by focusing on
the algebraic properties. They also extended their idea to
the evaluation of computational circuits (trees whose each
leaf has a value and each internal node has an operator)
with finite-sized matrices [26, 28]. Though their approaches
are interesting in theory, they impose much restriction on
the operators associated to each internal node. We give a
concise and practical condition for tree contraction where
we can define any computations on the internal nodes under
the flexible condition.

Automatic and Systematic Parallelization
Automatic parallelization of programs is a quite big chal-
lenge, and there have been several studies on automatic par-
allelization of loops over arrays. Fisher and Ghuloum [12]
have developed a parallelization system for loops on arrays
based on the isomorphism on the shape of program code.
Lu and Mellor-Crummey [18] have developed more powerful
pattern matching and code generation mechanisms on dis-
tributed memory environments. Xu et al. [33] have focused
on not only associativity but also distributivity to derive
parallel programs from users’ programs on lists or arrays,
and developed an automatic parallelization system. These
studies succeeded in generating automatically the efficient
parallel code from users’ sequential code. Though there are
several studies on parallelizing loops, as far as we are aware
there is no (semi-)automatic parallelization system that can
be applied to tree structures.

Our work is also related to systematic derivation of par-
allel programs. Systematic parallelization has been actively
studied in the framework of skeletal parallel programming [8],
and many studies have been done [7, 14, 16, 22, 30] on lists
or arrays. For trees, several researchers have studied the sys-
tematic parallelization. Skillicorn formalized five primitive
computational patterns [31], and the tree reduction is one of
them. Ahn and Han [2] and we [21] have developed system-
atic methods for decomposing complex recursive programs
into the combinations of the primitive patterns. Our work
is addressed to the generation of efficient parallel programs
from the primitives derived so far.

6. CONCLUSION
In this paper, we have proposed a concise condition named

tupled-ring property for developing tree contraction pro-
grams for complex reductions. The key idea is to focus on
the algebraic properties of commutative semirings. We have
demonstrated application of the tupled-ring property to sev-
eral dynamic programming problems on trees in the paper.
We have developed a code generation system based on this
tupled-ring property, with an optimization mechanism that
removes unnecessary computations inserted in applying the
tupled-ring property. The system can automatically trans-
form users’ recursive reduction programs with some annota-
tions into parallel programs. With the tupled-ring property
and the code generation system, we can develop parallel
programs manipulating trees more easily from the familiar
sequential specifications.

One of our future work are to extend the pattern matching
routine for other tree manipulating algorithms such as accu-
mulations or scans to support the five primitives of parallel

tree skeletons.

Acknowledgments
We would like to thank Noriyuki Ohkawa for his help in
implementing the code generation system.

This work was supported by the Grant-in-Aid for Scien-
tific Research (B) No. 17300005 from Japan Society for the
Promotion of Science, and the Grant-in-Aid for Young Sci-
entists (B) No. 18700021 from the Ministry of Education,
Culture, Sports, Science and Technology.

7. REFERENCES
[1] K. Abrahamson, N. Dadoun, D. G. Kirkpatrik, and

T. Przytycka. A simple parallel tree contraction
algorithm. Journal of Algorithms, 10(2):287–302, June
1989.

[2] J. Ahn and T. Han. An analytical method for
parallelization of recursive functions. Parallel
Processing Letters, 10(1):87–98, 2000.

[3] D. A. Bader, S. Sreshta, and N. R. Weisse-Bernstein.
Evaluating arithmetic expressions using tree
contraction: A fast and scalable parallel
implementation for symmetric multiprocessors
(SMPs). In 9th International Conference on High
Performance Computing (HiPC 2002), volume 2552 of
Lecture Notes in Computer Science, pages 63–75,
Bangalore, India, December 2002.

[4] R. P. K. Banerjee, V. Goel, and A. Mukherjee.
Efficient parallel evaluation of CSG tree using fixed
number of processors. In ACM Symposium on Solid
Modeling Foundations and CAD/CAM Applications,
pages 137–146, Montreal, Canada, May 1993.

[5] A. Berglund, S. Boag, D. Chamberlin, M. F.
Fernandez, M. Kay, J. Robie, and J. Simeon, editors.
XML Path Language (XPath) 2.0. W3C Working
Draft 29, 2004. Available from
http://www.w3.org/TR/xpath20/.

[6] S. Boag, D. Chamberlin, M. F. Fernandez,
D. Florescu, J. Robie, and J. Simeon, editors. XQuery
1.0: An XML Query Language. W3C Working Draft
29, 2004. Available from
http://www.w3.org/TR/xquery/.

[7] W. N. Chin, A. Takano, and Z. Hu. Parallelization via
context preservation. IEEE Computer Society
International Conference on Computer Languages
(ICCL’98), pages 153–162, May 1998.

[8] M. Cole. Algorithmic skeletons : A structured
approach to the management of parallel computation.
Research Monographs in Parallel and Distributed
Computing, Pitman, London, 1989.

[9] R. Cole and U. Vishkin. The accelerated centroid
decomposition technique for optimal parallel tree
evaluation in logarithmic time. Algorithmica,
3:329–346, 1988.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press,
second edition, 2001.

[11] F. Dehne, A. Ferreira, E. Caceres, S. W. Song, and
A. Roncato. Efficient parallel graph algorithms for
coarse grained multicomputers and BSP.
Algorithmica, 33(2):183–200, 2002.

[12] A. L. Fisher and A. M. Ghuloum. Parallelizing
complex scans and reductions. In Proceedings of the
ACM SIGPLAN ’94 Conference on Programming
Language Design and Implementation (PLDI ’94),
pages 135–146, Orlando, June 1994.

[13] A. Gibbons and W. Rytter. An optimal parallel
algorithm for dynamic expression evaluation and its
applications. In Proceedings of the sixth conference on
Foundations of software technology and theoretical
computer science, pages 453–469, New Delhi, India,
1986. Springer-Verlag New York, Inc.

[14] S. Gorlatch. Systematic efficient parallelization of scan
and other list homomorphisms. In Annual European
Conference on Parallel Processing, LNCS 1124, pages
401–408, LIP, ENS Lyon, France, August 1996.
Springer-Verlag.

[15] X. He. Efficient parallel algorithms for solving some
tree problems. In 24th Allerton Conference on
Communication, Control and Computing, pages
777–786, 1986.

[16] Z. Hu, M. Takeichi, and H. Iwasaki. Diffusion:
Calculating efficient parallel programs. In 1999 ACM
SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM ’99),
pages 85–94, San Antonio, Texas, January 1999.
BRICS Notes Series NS-99-1.

[17] M. Kay, editor. XSL Transformations (XSLT) Version
2.0. W3C Working Draft 5, 2004. Available from
http://www.w3.org/TR/xslt20/.

[18] B. Lu and J. Mellor-Crummey. Compiler optimization
of implicit reductions for distributed memory
multiprocessors. In Proceedings of the International
Parallel Processing Symposium, 1998.

[19] K. Matsuzaki, K. Emoto, H. Iwasaki, and Z. Hu. A
library of constructive skeletons for sequential style of
parallel programming (invited paper). In First
International Conference on Scalable Information
Systems (INFOSCALE 2006), Hong Kong, May 2006.

[20] K. Matsuzaki, Z. Hu, K. Kakehi, and M. Takeichi.
Systematic derivation of tree contraction algorithms.
Parallel Processing Letters, 15(3):321–336, 2005.

[21] K. Matsuzaki, Z. Hu, and M. Takeichi. Parallelization
with tree skeletons. In Proceedings of the 9th EuroPar
Conference (EuroPar 2003), volume 2790 of Lecture
Notes in Computer Science, pages 789–798,
Klagenfurt, Austria, August 2003. Springer-Verlag.

[22] K. Matsuzaki, K. Kakehi, H. Iwasaki, Z. Hu, and
Y. Akashi. A fusion-embedded skeleton library. In
M. Danelutto, D. Laforenza, and M. Vanneschi,
editors, Proceedings of the 10th International EuroPar
Conference, volume 3149 of Lecture Notes in
Computer Science, pages 644–653, Pisa, Italy,
August/September 2004. Springer-Verlag.

[23] E. W. Mayr and R. Werchner. Optimal routing of
parentheses on the hypercube. Journal of Parallel and
Distributed Computing, 26(2):181–192, 1995.

[24] E. W. Mayr and R. Werchner. Optimal tree
contraction and term matching on the hypercube and
related networks. Algorithmica, 18(3):445–460, 1997.

[25] G. L. Miller and J. H. Reif. Parallel tree contraction
and its application. In 26th Annual Symposium on
Foundations of Computer Science, pages 478–489,

Portland, OR, October 1985. IEEE Computer Society
Press.

[26] G. L. Miller and S.-H. Teng. Dynamic parallel
complexity of computational circuits. In Proceedings
of the nineteenth annual ACM conference on Theory
of computing, pages 254–263, New York, USA, 1987.
ACM Press.

[27] G. L. Miller and S.-H. Teng. Tree-based parallel
algorithm design. Algorithmica, 19(4):369–389, 1997.

[28] G. L. Miller and S.-H. Teng. The dynamic parallel
complexity of computational circuits. SIAM Journal
on Computing, 28(5):1664–1688, 1999.

[29] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath:
Looking forward. In A. B. Chaudhri, R. Unland,
C. Djeraba, and W. Lindner, editors, XML-Based
Data Management and Multimedia Engineering -
EDBT 2002 Workshops, EDBT 2002 Workshops
XMLDM, MDDE, and YRWS, Prague, Czech
Republic, March 24-28, 2002, Revised Papers, volume
2490 of Lecture Notes in Computer Science, pages
109–127. Springer, 2002.

[30] D. B. Skillicorn. The Bird-Meertens formalism as a
parallel model. In J. S. Kowalik and L. Grandinetti,
editors, NATO ASI Workshop on Software for Parallel
Computation, NATO ARW “Software for Parallel
Computation”, volume 106 of F, Cetraro, Italy, June
1992. Springer-Verlag NATO ASI.

[31] D. B. Skillicorn. Foundations of Parallel
Programming. Cambridge University Press, 1994.

[32] D. B. Skillicorn. Parallel implementation of tree
skeletons. Journal of Parallel and Distributed
Computing, 39(2):115–125, 1996.

[33] D. N. Xu, S.-C. Khoo, and Z. Hu. PType system: A
featherweight parallelizability detector. In W.-N.
Chin, editor, Proceedings of Second Asian Symposium
on Programming Languages and Systems (APLAS
2004), volume 3302 of Lecture Note in Computer
Science, pages 197–212, Taipei, Taiwan, November
2004. Springer-Verlag.

