IPL. 2025 Workshop on Foundations of Software
March 22, 2025

Masato Takeichi
“Coordination-free Collaborative Rel:)lication

based on OPerational Transformation’

Masato Takeichi. “Coordination-free Collaborative Replication based on
OPerational Transtormation”, September 16, 2024, |_ast Revised December 15
(version 3) arXiv:24-09.09934vA3. https: // cloi.org/ 10.48550/arXiv.2409.099%4

https://doi.org/10.48550/arXiv.2409.09934

How can we keep distributed rePlicatecl data consistent?
A Short Storg

Consider a real-world examl:)le of distributed data sharing: Peers P and O

have their local data D, and D, to be ap Drol:)riatelg “replicatecl”.

~ P and Q have replicas D, and D, as instances of the common set data.

~ Pand Q uPclate Dp and D, respectivelg whether or not the network

connection is alive, and theg try to get the new common states D, and

Q’Q_during the connection is alive.

Fach peer adds element x into its local replica (written as @ x) and removes

element x from the replica (written as © x), and sends these oPerations to
the Partner peer. This is the basic updating rocess of the peers.
The peer receives remote operations sent from the Par‘mer peer and puts

them on its local rcplica D so that it becomes same as that of the Par’mer

peer. ~ How Dp and D, are replicatecl into D}, and Dy
What happeﬂs in the events: |- What is the result after step 57

. Start with D,=D, = {A,B}. | » I1sD} = {A,B},or Dj = {A,C}?
2.Connection fails. » Is Dy, ={A,C},or D, ={A,B,C}7?

5.P does @ C and then eC.|~-Is it Pertinent and aPProPriate bg sound
4.0 does ©Band @ C. reasoning ”

5.Connection is restored. 5

% ?:tart Wﬂ? D’?:,DQ = {A,B}. ASk CCRAgCﬂJE ~ Wl‘nalt i;s)the Effuét}alctelgstep{i’? .
onnection tails.) sD. = ,Bl,orDj, = , .

@ Pdoes @ Candthen ©C.. FOI’ Consistent : s DI’J = {A,C}, or DI7 = {A,B,C}?

@ Odoes ©Band @ C.: l g ' Q 1 @ L Lo

® Connection is restor ed R@P ication ,;r Is it Per’tment an approprlate.

*** CCRAgent Ver6.3 for EE.‘;ET_String (2025‘/‘0‘1/1 3) ***

* Agent Started on Port 9001 '
#1: Conn 9000 '
* Connection $9000 started %

> Received Ops [Add $0 'A" Add $0 "B"] from $9000

#2: Show
Replica {
Data= {IIAII,IIBII} F

1
I
I
1
]
L}

@

> CCRAgent Ver6.3 for ESET_String (2025/01/13) ***
* Agent Started on Port 9000

#1: Gonn 9001

* Cpnnection $9001 started

#5: Add “A", Add "B"

"< Sent Ops [Add $0 "A" Add $0 "B"] to $9001

1#3: Show
Replica {

C.)-c;%nections= [$9000+:.:'E2..2](2..2]] ;

1 4
] 4

#3: Delay 30 [N
* Agent delays 30 sec.!before accepts Patch @ '

#4: Rem “B", Add "C" @ ;

< Sent Ops [Rem $1 "B",Add $1 "C"]to $9000 .
> Received Ops [Add $0 "C",Rem $0 "C"] from $3000 (5)

< Sent Ops [Rem $1 "B",Add $1 "C",Rem $0 "(,3""] to $9000
> Received Ops [Add $0 "C",Rem $0 "C",Rem'$1 “B"]
from $9000 N

4
4
4

»Da}{gz {"A","B"}

A
A

#4: Delay-30
" Agent defays 30 sec. before accepts Patch @

#5: Add “C", Rem "C" (3)

< Sent Ops [Add $0 "C",Rem $0 "C"] to $9001
> Received Ops [Rem $1 "B",Add $1 "C"] from $9001 (5)

< Sent Ops [Add $0 "C",Rem $0 "C",Rem $1 "B"] to $9001
> Received Ops [Rem $1 "B",Add $1 "C",Rem $0 “C"]
from $9001

#5: Show N #6: Show

Replica { Whg not {A,C}7 Replica {

Data= {"A"} < 2 » Data= {"A"}

Revs=5 Revs= 5

UpdLog=[Add $0 "A",Add $0 "B",Rem $1 "B",Add $1 “C", UpdLog=[Add $0 "A",Add $0 "B",Add $0 "C",Rem $0 “C",
Rem $0 "C"] Rem $1 "B"]

Ca%nections= [$9000+:(5..5](5..5]]

C-)-cs}nnections: [$9001+:(5..5](5..5]]

Problems to be solved for Consistent Replication
e | ocal replicatecl data D, € @ in P and Dy € & in O may be concurrentlg

updated bﬂ p to Produce D,Op €D and bg q to Procluce D,0g € 2.
e Given the Lastlg Replicatc& Common State D € D as the “baseline”, how
can we make DOp and DOg consistent for the next baseline D’ € @7

D D

Peer P % DKPeer 0 Peer i)y %ecr)

Dop DOg DQKT#DQ DOg
(an Qp) =TpP, 9) T v /q

A &
D' = (DOp)L(DOY) D’ = (DOp)0g,=(DOg)Op,
CRDT Solution OT-based Solution
e Predefined “merge” LI on 9 Procluces the ® Tp@, q) PrOdUCCS (P q,) for
next baseline D' € @ frombD € 9. generating the “confluent” o[:)erationp

°* p and q must be conformable to LI defined #pq which makes D € @ into the next
on Partia”g ordered set @ with element- baseline D' e @.

wise o[:)eration O Xx. ~ pOq, and q Op, are concrete

~ Setd: Ox =U{x} for insert x into D. rel:)resentations OFP#DQ~

-~ Counter 2: @ x = + xforadd xto ® Tn(p, q) must 58551(:3 TPl and TP2
- MaxZ: 0 x =1 xfor maxofxandD. properties for Consistency and

4 Coordination Avoidance.

ShOPPng Cart Problem in CRDT implementation

ABSTRACT

Despite decades of research and practical experience, developers
have few tools for programming reliable distributed applications
without resorting to expensive coordination techniques. Conflict-

free replicated datatypes (CRDTs) are a promising line of work

\

that enable coordination-free replication and offer certain eventual

consistency guarantees in a relatively simple object-oriented API.
Yet CRDT guarantees extend only to data updates; observations of
CRDT state are unconstrained and unsafe. We propose an agenda
that embraces the simplicity of CRDTs, but provides richer, more
uniform guarantees. We extend CRDTs with a query model that
reasons about which queries are safe without coordination by ap-
plying monotonicity results from the CALM Theorem, and lay out
a larger agenda for developing CRDT data stores that let developers
safely and efficiently interact with replicated application state.

Slﬁaclaj | .addad, et.al. “KeeP
L M and CRDT On”. PVLDB,

16(3K): 856-863, 2022

Current Trend in Replicatecl Data
Sharing

e Intended Contents of the
2P-Set=A — R

e Cannot @C}Cectivelg add
items into the Cart (Set) if

theg have been once

added and then removed.

ExAMPLE 1 (THE POTATO AND THE FERRARI, A.K.A. EARLY READ).
A canonical CRDT is the Two-Phase Set (2P-Set) [51], which is a pair
of sets (A, R) that track items to be added (A) and removed (R). The

@
set

unction for two 2P-Sets is defined simply as the pairwise union,
(A1 U Az, R URy) and is patently ACL This scheme was used in the
well-known Amazon Dynamo shopping cart example [11].

p

Demonstration of Two-Phase Set
CRDT in Haskell

CRDT can represent grow~a!3|e data onlg! —

module TwoP_Set
(TwoP_Set,zero,value,insert,delete,merge) where

import qualified GSet

import qualified Data.Set as Set

type TwoP_Set a = (GSet.GSet a. GSet.GSet a)

zero :: TwoP_Set a)
zero = (GSet.zero, GSet.zero) Wlth two GSet
value :: Ord a = TwoP_Set a — Set.Set a

value (ins,del) = Set.difference 1ins del

:: Ord a = a — TwoP_Set a — TwoP_Set a
(GSet.insert a 1ins, del)

insert
insert a (ins,del) =

delete ::
delete a (ins,del)

Ord a = a — TwoP_Set a — TwoP_Set a
(ins, GSet.insert a del)

Ord a =
TwoP_Set a — TwoP_Set a — TwoP_Set a
merge (insl,dell) (ins2,del2) =

(GSet.merge 1insl ins2, GSet.merge dell del2)

merge ::

:: TwoP_Set String
(Set.fromList["A","B","C"],Set.fromList["B"])

d_p
d_p

:: TwoP_Set String
(Set.fromList["D"],Set.fromList["A"])

d_q
d_q

2P-Set (A, R) Pairecl

module GSet(GSet,zero,value,insert,merge) |

where Grow~Oan Set
a.Set as Set

import qualifie

Set a = Set.Set a

zero GSet a
zero = Set.empty

value GSet a — Set.Set a
value s = s

insert Ord a = a — GSet a — GSet a
insert a s = Set.insert a s

merge Ord a = GSet a — GSet a — GSet a
merge s t = Set.union s t

ghci> d_p DP= ({A’ B,C},{B})
(fromList ["A","B","C"],fromList ["B"]) |

ghci> d_q _
fromList ['D".fromList fA) e~ (D1 UAD

ghci> value d_p St D ' A
fromList ['A" "G 2P-5Set Dp represents Set {A, C}
ghci>valued_q 2P-Set D represents Set {D}
fromList ['D"] D.uD.= (!A.B.C.D'. {A.B
ghCi> merge d_p d_q P 0] ({ s Ly Ny }7 { 9 })
(fromLiSt [IIAII’IIBII’IICII,IIDII]’fromLiSt [IIAII,IIBII]) |
ghci> value it D, U D, represents {C,D
fromList ["C","D"] d 0P { }
ghci> insert "B" d_p B is added again
(fromList ["A","B","C"],fromList ['B"]) into Dp

hci> value d
19romList "A" Fg..] But B has not been added to Set

Rebirth of OPerational Transtormation in chlicatecl Data Slﬁaring

o OT, origina“g Proposed in 1989, has FAILURES OF OFERATIONAL. TRANSFORM
been |<ePt away from replicated —

data sharing since most of

algorithms were PT’OVCCI wrong.

e In OT-based rel:)lication,
Q UPclating process is broken into a

Eatch of oPerations transmitted
etween sites.

@ In each site, iIncoming oPerations
are transformed to get the local

operations to be Pemcormed since
Martin Kleppmann, CRDTs and the Quest for Distributed

Consistencg
Atalk at QCon Lonclon, Lonclon) UK, 05 Mar 2018
htt!:)s://martin.Ue!:)!:)mann.com/ZOIS/Oﬁ/Oﬁ/c!cor%Iondon.html

the baseline (las’c common state).
© Theg are then appliecl |oca”9 to

get the new baseline.

e [or complex RTCE (Realtime Collaborative Editor) ol:)erationsj transformation have
eclge cases difficult to ensure Proclucing the confluent baseline. However, it 1s not
ditficult in careFu”g selected oPerations with the assuml:)tion of collaboration.

o (CR (Coorc:lination~1cree Collaborative Replication) IS a cha”enge against the trends.
/

https://martin.kleppmann.com/2018/03/05/qcon-london.html

A New /—\Pproach to Collaborative Replication

Masato Takeichi. “Coordination-free Collaborative Rel:)lication based on OPerational
Transgormation”, September 16, 2024, Last Revised December 15 (version 3)
arXiv:2409.099%343. ttps://Aoi.org/l0.48550/ar><iv.2409.09954

Abstract. We introduce Coordination-free Collaborative Replication
(CCR), a new method for maintaining consistency across replicas in dis-
tributed systems without requiring explicit coordination messages. CCR
automates conflict resolution, contrasting with traditional data sharing
systems that typically involve centralized update management or prede-

fined consistency rules.
Conflict-free Replicated Data Type (CRDT), like Two-Phase Sets (2P-

Sets), guarantees eventual consistency by allowing commutative and as-
sociative operations but often result in counterintuitive behaviors, such
as failing to re-add an item to a shopping cart once removed.

In contrast, CCR employs a more intuitive approach to replication. It
allows for straightforward updates and conflict resolution based on the
current data state, enhancing clarity and usability compared to CRDTs.
Furthermore, CCR addresses inefficiencies in messaging by developing
a versatile protocol based on data stream confluence, thus providing a
more efficient and practical solution for collaborative data sharing in
distributed systems.

https://doi.org/10.48550/arXiv.2409.09934

CCRAgent for ESET_String Aclcling and Removing Strings to/from Set

type ElemType = String

type ReplicaData = [ElemType]

data Replica = Replica
{ replicaData :: Replica
replicaPatch :: Patch

Data

: replicaRev :: RevIndex -—- Revision index

, replicaDelay :: Int -- Delay d*x1000000 sec.

i replicaVerbose :: Bool
initRep'l_ica — Replica “C‘H:CCJDCUP means that

{ replicabData = [] ((

, replicaPatch = [] the oPeratxon egectxvelg

, replicaRev = 0 updates the state

, replicaDelay =

i replicaVerbose = False |
data Op Updatmg operatxons are Aclcl) Rem and None

= Add ReplicalD ElemType
| Rem ReplicalID ElemType
| None

deriving (Eq

effectfulOp :: Op —> Repli
effectfulOp op@(Add _ x) d
if List.elem x d then No
effectfulOp op@(Rem _ x) d
if List.elem x d then op
effectfulOp None d = None

transOp :: ReplicaData —>
transOp d p g =
let p' effectfulOp p d

. q' effectfulOp q d
in
if p'==q' then (None,

)non~eﬂécﬂidupdathone¥br«nO~OP”

caData —> Op

ne else op

else None

Op —> Op —> (Op, Op)

CITFxoducesaAdﬁkwwao s
P’andcftolxzpeﬁ%wmed

None) else (p’,q") |

takeichi@Bowmore ESET_String % ./ESET_String 9000

* Agent Started on Port 9000
Listening on http://127.0.0.1:8000
* CCRAgent Started for ESET_String (2025/01/13)

#1: Add "X" U o
40 Add "Y" Add v after Add “X? is effectful

#3: Show
Replica
ata: {IIXII , IIYII}

#4: Rem "X

#5: Show

Replica {

Data= {"Y"} [“X”Ras been removed
Revs= 3 o

UpdLog= [Add $0X",Aqd $0 "Y",Rem $0 "X"]
Delay= 0
Verbose= False}
Connections= [] .

#6: Rem "W" Rem “W” is non-eHectful
#7: Show

Replica {

Data= {"Y"}

Revs= 3

UpdLog=[Add $0 "X" ,Add $0 "Y",Rem $0 "X"]
Delay=0

Verbose= False}

Connections= []

Local-First Software:
You Own Your Data, in spite of the Cloud

Abstract

Data Sharing in “Local-First” Software

Martin Kleppmann, Adam Wiggins, Peter van

Cloud apps like Google Docs and Trello are popular because Harclenberg) and Mark MCGranaghan. Proc.
they enable real-time collaboration with colleagues, and they 21 9 ACM Onwa ra’] 9.

make it easy for us to access our work from all of our devices. https://doi.org/10.1145/3359591.3359737

However, by centralizing data storage on servers, cloud apps
also take away ownership and agency from users. If a service
shuts down, the software stops functioning, and data created
with that software is lost.

In this article we propose local-first software, a set of prin-
ciples for software that enables both collaboration and own-
ership for users. Local-first ideals include the ability to work
offline and collaborate across multiple devices, while also
improving the security, privacy, long-term preservation, and
user control of data.

We survey existing approaches to data storage and sharing,
ranging from email attachments to web apps to Firebase-
backed mobile apps, and we examine the trade-offs of each.
We look at Conflict-free Replicated Data Types (CRDTs):
data structures that are multi-user from the ground up while
also being fundamentally local and private. CRDTs have
the potential to be a foundational technology for realizing
local-first software.

We share some of our findings from developing local-first
software prototypes at the Ink & Switch research lab over
the course of several years. These experiments test the via-
bility of CRDTs in practice, and explore the user interface
challenges for this new data model. Lastly, we suggest some
next steps for moving towards local-first software: for re-
searchers, for app developers, and a startup opportunity for
entrepreneurs.

Development of Local-First Data Sharing

Christian Kuessner, et.al., “Algebraic Replicated
Data Tgpes: Programming Secure Local-First
Software”. ACM ECOOP 2025.

—— https://doi.org/10.1145/3359591.3359737

De\/elopment ot Local-First Data Sharin

~ Designing the application state wit
replication-awareness

— E&'cient messaging in given target
network topolo Y

~ Securitg o{'P exc angecl data

More Realistic Example follows ...

10

More Realistic Example: | ocal-First Social Media Application with CRDT

Used bg a group of friends in a peer-to-peer
network to share messages, comments, |i‘<es)

and dislikes.

Christian Kuessner, et.al., “Algebraic
Replicated Data Tgpes: Programming Secure
Local-First Software”. ACM ECOOP 2023.
https://doi.org/10.1145/3359591.3359737

SocialMedia - Map of Quaclruples

LWW (Strin Set of LWW (Strin Counter
ID message comments ikes | dislikes 9 g> .
Replical val Replical val RepllcalD val
SocialPost
Set of Int Int Int

LWW(String) LWW (Strin g} Counter Counter

def like(post: ID,
val increment
SocialMedia (Map (post

replica: ReplicalD):

-> SocialPost (likes

LWW[String],
dislikes:

case class SocialPost(message:
Set [LWW[Stringl]l, likes: Counter,

case class SocialMedia(sm: Map[ID, SocialPostl]):
SocialMedia
sm(post).likes.inc(replica)

comments:

Scala b, implementation

increment)))

In CRDT, along with these
type definitions, builcling

Counter)

case class Counter(c: Map[ReplicalID, Int]):
def value: Int c.values.sum
def inc(id: ReplicaID): Counter

Counter (Map(id -> (c.getOrElse (id,

0) + 1))

10
11
// object for static methods
Counter (Map.empty)

12 object Counter:

13 def zero: Counter

composite semi-lattice
from component ones 1s
rcquirecl.

CCR implementation shown later

11

Comparison of CRDT and CCR for Replication

CRDT
Conflict-free Replicatecl Data Tgpe

CCR

Coordination-free Collaborative Replication

Replica Data
RePresentation

Querg for the Value
of the Replica

Conflict-free
Confluence 139

Eventual
Consis‘cencg bg ...

Additional data for
Replica

Coordination-free
Asgnchronous

messaging bg

Structured Data

Ordered Set (Semi-lattice)
indirect from the Data Value

Pre-defined Merge to get least upper
bounds (LUB) of Semi-lattice

Metadata requirecl for reasoning about
causal relations on the Representation

CvRDT (State-based): Replica Data
CmRDT (OPeration~based):
Reliable Causal Broadcast (RCB) for
commutative ancljust——once messaging

Build structured semi-lattices from

Ang Data Tgpe

OPerational Transformation (OT)
with TP-1 Compositional Propertg

TP2-Confluence with ldempotence,
Associativitg and commutativit9

E‘xchange oPeration sequences (Patch)
since the last common replication in any
order; allows duplicated messaging and
ar networks

over circu

As structured algebraic data tHPC with

components’ semi-lattice

definition of OT using comPonents’ OTs

12

l mplementation of CCRAgent
for

Coordination-free Collaborative Data Slﬁaring

b

Running CCRAgent in % Sites with Network Connections

takeichi@Bowmore CCRExecutable % ./COUNTER 9001

sxxx CCDSAgent Ver6.1l for Counter (2025/02/08) sxxx
* Agent Started on Port 9001 (
Listening on http://127.0.0.1:8001 .Esftff fb]
* CCDSAgent Started for Counter (2025/
'Conn p' connects to Agent at Port p
'Drop p' drops connection Port p
'Sleep n' sleeps n sec. before next command
'Show' shows Replica and Connection
'Verbose' prints messages
'Silent' stops printing messages
'Run f' runs commands from file f
.. updates local replica with operations
'Quit' quits Agent
#1: Conn 9000
#2:

takeichi@Bowmore CCRExecutable % ./COUNTER 9002
stk CCDSAgent Ver6.1 for Counter (2025/02/08) xxx
* Agent Started on Port 9002

Listening on http://127.0.0.1:8002 fSltfi :B;l
* CCDSAgent Started for Counter (2025/02/__,

'Conn p' connects to Agent at Port p

'Drop p' drops connection Port p

'Sleep n' sleeps n sec. before next command

'Show' shows Replica and Connection

'Verbose' prints messages

'Silent' stops printing messages

'Run f' runs commands from file f

takeichi@Bowmore CCRExecutable % ./COUNTER 9000
s+ CCDSAgent Ver6.1l for Counter (2025/02/08) xx*x
* Agent Started on Port 9000 (
Listening on http://127.0.0.1:8000 ESItIi jS()
* CCDSAgent Started for Counter (2025/¢_, __.

'Conn p' connects to Agent at Port p

'Drop p' drops connection Port p

'Sleep n' sleeps n sec. before next command

'Show' shows Replica and Connection

'Verbose' prints messages

'Silent' stops printing messages
'Run f' runs commands from file f

. updates lodg
"Quit' quits Agd
#1: Conn 9001

Circular connection allowed

. updates local replica with operations
'Quit' quits Agent

#1: Conn 9001

*x Connection $9000 started
Connections= []

#2: Incr 5 | ocg Update in Site $1

#3:
< Sent Ops [Incr $1 5] to $9000
> Received Ops [Incr $1 5] from $9000

< Sent Ops [] to $9000
> Received Ops [Incr $1 5] from $9002
— No Direct Conn to $9002

No direct connection to Site
Data=5 - $2, via Site $0 instead

UpdLog= [Incr $1 5]

Delay= 0

Verbose= False}
Connections= [$9000+:(1..1]1(1..1],$9002-]
#4: > Received Ops [Incr $1 5,Decr $2 2] from $9002
— No Direct Conn to $9002

#3: Show
Replica {

< Sent Ops [Decr $2 2] to $9000
> Received Ops [Decr $2 2] from $9000

< Sent Ops [] to $90n0n

#4: Show Update Replxcatlon N
Replica { . l

Data= 3 == .. Site $2 comp etes

Revs= 2 S

UpdLog= [Incr $1 5,Decr~$2-2]._ _

Delay= 0

-
-
-
-
-
-
-
-y
-
=

Verbose= False}
Connections= [$9000+:(2..2]1(2..2]1,$9002-]
#5:

Connections= [$9001+:(0..0](0..0]]
#3: > Received Ops [Incr $1 5] from $9000

< Sent Ops [Incr $1 5] to $9000

< Sent Ops [Incr $1 5] to $9001
> Received Ops [] from $9000

hai UPclate Replication n
Reves 30T Site $0 Complctes i
UpdLog= [Incr $1 5]
Delay= 0

Verbose= False}
Connections= [$9000+:(1..1](1..1],%$9001+:(0..1](0..0]]

#4:Decr 2y | UEClatC N Site $2

#5:
< Sent Ops [Incr $1 5,D $2 2] to %9001

A

Sent Ops [Decr $2 2] to $9000
Received Ops [Decr $2 2] from $9000

\'

A

Sent Ops [] to $9000
Received Ops [] from $9000

\%

#5: Show
Replica {
~Data= 3
Revs= 2~
UpdLog= [Incr $1 5,Decr $2 2]
Delay= 0
Verbose= False}
Connections= [$9000+:(2..2](2..2],%$9001+:(0..2](0..0]]
#6:

14

‘=A—Connection $9001 started onnection $9001 started
Connections= [] Connections= []
Conn 9002
#2: Conn 9000 #3:
#3: Connection $9002 started
* Connection $9000 started | Connections= [$9001+: (0..0](0..0]]

> Received Ops [Incr $1 5] from $9001

< Sent Ops [Incr $1 5] to $9001

[Incr $1 5] to $9002
Ops [Incr $1 5] from $9002

< Sent Ops
> Received

[] to $9002
Ops [l from $9001

< Sent Ops
> Received

#3: Show
Replica {

o -Dartaz 5

Revs= 1

UpdLog= [Incr $1 5]

Delay= 0

Verbose= False}

Connections= [$9001+:(1..1]1(1..11,$9002+:(1..1]1(1..11]
#4: > Received Ops [Decr $2 2] from $9001

< Sent Ops [Decr $2 2] to $9001

[Decr $2 2] to $9002
Ops [Decr $2 2] from $9002

< Sent Ops
> Received

[] to $9002
Ops [l from $9001
Ops [1 from $9002

< Sent Ops
> Received
> Received

#4: Show
Replica {

4 .Data= 3

Revs= 2

UpdLog= [Incr $1 5,Decr $2 2]

Delay= 0

Verbose= False}

Connections= [$9001+:(2..2](2..2],$9002+:(2..2]1(2..2]]
#5:

CCR lmplementation of Realtime Collaborative Editor M

type ReplicaData = String takeichi@Bowmore RTCE % ./RTCE 9000
dagarggﬂgggaiaR‘?PlF{gg LicaData =+ CCDSAgent Ver6.1 for RTCE Text Editing (2024/10/07) ***

, replicaPatch :: Patch .

, replicaRev :: RevIndex -- Revision Index Agent Started on Port 9000

, replicaDelay :: Int -- Delay d*1000000 sec.| |Listeningon http://127.0.0.1:8000

i replicaVerbose :: Bool * CCDSAgent Started for RTCE Text Editing (2024/10/07)
o . . '‘Conn p' connects to Agent at Port p
1n%tRep{%CaD=tReglﬁﬁa 'Drop p' drops connection Port p

ﬁggligngtgh_z] 'Sleep n' sleeps n sec. before next command

" replicaRev = 0 'Show' shows Replica and Connection

, replicaDelay = 0 ‘Verbose' prints messages

, replicaVerbose = False 'Silent' stops printing messages

I3 '‘Run f' runs commands from file f
data Op Updating Op: Ins (Insert) and Del (Delete) | ... updates local replica with operations

. . '‘Quit' quits Agent
= Ins ReplicalD Int String ' o _ gl e . .
| Del ReplicaID Int Int SPCC@ position and text 11: Ins 0 "XY", Ins 1 "AB" Successive insertions

| None Specigg Position and number of chars #2: Show /

deriving (Eq) Replica {
Data= "XABY"
effectfulOp :: Op — ReplicaData —> Op Revs= 2
effectfulOp op@(Ins _ k s) d = o A/ AR
if (k>=0)&&(k<=length d) then op else None Bplch_JgO_ [I:hs $00 "X¥",Ins $0 1 *AB']
effectfulOp op@(Del _ k n) d = clay=u .
if (k>=0)&&(k+n<=length d) then op else None Verbose= False}
effectfulOp None d = None Connectiong= []
_ #3: Del 2 2 . Delete 2 chars from Position 2
transOp :: ReplicaData —> Op —> Op —> (Op, Op) #4- Show
transOp d p q = : :
let p'= effectfulOp p d Fé)eae[gcia..g(A..' /
q'= effectfulOp g d -
in Revs= 3
if p'==q' then (None, None) Udeog= [Ins $00 "XY",Ins $0 1 "AB",Del $0 2 2]
else trans' p' q' Delay=0
Verbose= False}
Connections= []

15

CCR lmplementation of Realtime Collaborative Editor (2)

trans' p@(Ins i_p k_p t_p) q@(Ins i_g k_g t_qg) =
if p==q then (None,None)
else

if k_p==k_q then
if t_p==t_q then
if i_p>i_qg then
(Ins i_p (k_p+length t_q) t_p, Ins i_q k_q t_q)
else
(Ins i_p k_p t_p, Ins i_q (k_g+length t_p) t_q)
else
if t_p>t_qg then
(Ins i_p (k_p+length t_q) t_p, Ins i_q k_q t_q)
else
(Ins i_p k_p t_p, Ins i_qg (k_g+length t_p) t_q)

else
if (k_p > k_q)
then
(Ins i_p (k_p+length t_q) t_p, Ins i_gq k_g t_q)
else

(Ins i_p k_p t_p, Ins i_qg (k_g+length t_p) t_q)

trans' p@(Del i_p k_p n_p) g@(Del i_g k_q n_q)

k_p==k_q && n_p==n_q
(None,None)
k_q >= k_p+n_p

e OT for RTCE is rather complex and
tedious to ProcnC that this has the
TP1 and TP2 with compositional and
confluence Properties.

o Currentlgj the Proo{t has not yet
been done!

Instead, it has been checked bﬂ
execution to confirm no exceptions
reportecl through more than 1000

ranclom|9 generatecl oPerations.

ﬁDEI>f E k+ﬁ n_p, Del i q (k_g-n_p) n_q) trans' (Ins i_p k_p t_p) (Del i_q k_q n_q)

(Dgl ip ? Bqn q) n_p, Del i_g k_qg n_q) l P >= kg &&uh_p < k_a+n_q

k_p >= k_q && k_p+n B Lok qing T &Igs<1kqu_q , Del i_gq k_g (n_g+length t_p))
(Del 1P kg @, Del i g k_g (n_g-n_p)) = (Ins i_p k_p t_p, Del i_q (k_g+length t_p) n_q)
K q >= k_p & k_q+n_g <= k_p+n_p | otherwise

ﬁDel>f E k_p (n_p-n_q), Del i_q k_p @) = (Ins i_p (k_p-n_q) t_p, Del i_q k_q n_q)

16? d_ Rq + K trans' d@Del{} i@Ins{} =

: - KQ¥N_Qg-K_p . let (p',q') = trans' i d in (q',p")

12h(De1 ip k_g (n_p-d), Del i_q k_g (n_a-d)) [5ns' None q = (None,q)

%etegwisﬁ p+n_p-k_q trans' p None = (p,None)

in (Del i_p k_p (n_p-d), Del i_q k_p (n_g-d))

16

CCR lmplementation of Composite Structured Replica - QUAD for Social Media

import qualified ReplicalwWwW_String -- message |
import qualified ReplicaESET_String —— comments) o
import qualified ReplicaCOUNTER -- likes and dislikes quahca<:KJ/\E>ccnnPcmxxﬂcﬁL+13nnnhvc<3F
data ReplicaData = which RCPIICB definitions lmPorted
Quad ReplicalWW_String.ReplicaData -- message Replica
ReplicaESET_String.ReplicaData —- comments Replica
ReplicaCOUNTER.ReplicaData —-- likes Replica
ReplicaCOUNTER.ReplicaData —-- dislikes Replica

initReplica = Replica transOp :: ReplicaData —> Op —> OE —> (0€¢ Op)
es dislik

{ replicaData = .
. . : transOp (Quad message comments 1i es) p q =
Quad (ReplicalWW_String.replicaData if p==q then (None, None) else

(ReplicaESET_String.replicaData if g==None then (p, None) else
ReplicaESET_String.initReplica) let (QuadOp replicalID_p ms_p cs_p ls_p ds_p) = p
(ReplicaCOUNTER. replicaData (QuadOp replicaID_q ms_q cs_q ls_q ds_g) = g
ReplicaCOUNTER. initReplica) (mS_P'zmS_ﬂw) =
(ReplicaCOUNTER. replicaData (Cgeg}lggL _String.transPatch message ms_p ms_q
replicapaﬁﬁﬁlfc?§OUNTER'(:ﬂ‘tnansC)P (IREpli%aFgE;_String.transPatch comments cs_p cs_(q
’ ! = , S 1 , s [—
, replicaRev = 0 tnansﬂaﬂﬂs<3P5Lxﬂng; REBlicaC8UNTER.transPatch likes ls_p ls_q
, replicaDelay = 0 C)T'ﬁarcxmnFXJHCHt (ds_p',ds_q') =
, replicaVerbose = False (C(CR ReplicaCOUNTER. transPatch dislikes ds_p ds_g
} ° in (QuadOp replicalD_p ms_p' cs_p' 1ls_p' ds_p'
| QuadOp replicaID q ms_q' cs_q' ls_q' ds q')
data Op |
= ngdOI{ _ReEvlwf\L’Cg%D. patch takeichi@Bowmore QUAD % ./QUAD 9000
epr1catii_~>tring.ratc *** CCDSAgent Ver6.3 f jal Post les (2024/08/18) ***
ReplicaCOUNTER.Patch #2:Sh ’ ’ ’
N ReplicaCOUNTER. Patch Re.plicg\?/ \ Operations given component-wise in
one . PARN
deriving (Eq) Data= ({"XYZ"}.{"AB"},6,-2) Parentheses delimited with ;.
‘,/,//”"=fquevs:1
, o UpdLog= [QuadOp $0 [Write $0 {"XYZ"}] [Add $0 "AB"] [Incr $0 6] [Decr $0 2]]
EMSPkyjcurmﬂﬂﬂ?ePhcanﬂshcwtgormat Delay= 0
Verbose= False}
Connections= []

i/

CCR lmplementation of Local-First Social Media Application M

e MAFP_QUAD maps Int kegs to quaclruples values

® Quaclruple values consist of four component values of Replica THPC representing
Social Media information

o Upclatcs of the elements of the MaP are Processecl in component~wise of

C]UBCIFUP]CS

type ElemType
type KeyType

ReplicaQUAD.ReplicaData
Int

type ReplicaData = IntMap.IntMap ElemType

data Replica = Replica

{ replicaData :: ReplicaData
, replicaPatch :: Patch
, replicaRev :: RevIndex —-— Revision Index
, replicaDelay :: Int -- Delay d*x1000000 sec.
, replicaVerbose :: Bool
} Updating Operati fthe M
atin erations o e Ma
data Op P &P P

Upd ReplicalD KeyType ReplicaQUAD.Op
| Del ReplicalD KeyType

| None

deriving (Eq)

applyOp :: Op —> ReplicaData -> (ReplicaData.Opn) ||
applyOp op@(Upd _ k quadOp) d =
let v

case IntMap. lookup k d of
Nothing —>
ReplicaQUAD. replicaData

ReplicaQUAD.initReplica

Just v —> v
(v',_) = ReplicaQUAD.applyOp quadOp v

in (IntMap.insert k v' d, op)
applyOp op@(Del _ k) d =

Del given with
'tesamekq%

Initial QUAD value
installed when no

dementwﬁhkgg
goun&inthehﬂap

When Upd and

[)elkspneﬁamfxﬂ

(IntMap.delete k d, op)

effectfulOp :: Op —> ReplicaData —> Op
effectfulOp op@(Upd _ k quadOp) d = op
effectfulOp op@(Del _ k) d = op
effectfulOp None d = None
transOp :: ReplicaData -> Op —> Op —> (Op, Op)
transOp d p g =
let p'= effectfulOp p d
qg'= effectfulOp q d
in if p'==q' then (None, None)
else trans' p' q'
where
trans' p@(Upd i_p k_p ops_p) g@(Upd i_q k_q ops_q)=
if k_p == k_q then
v = case IntMap. lookup k_p d of

Nothing —>
B ReplicaQUAD. replicaData
ReplicaQUAD.initReplica
Just v —> v
(ops_p',ops_q')=
ReplicaQUAD.transPatch v ops_p ops_q
in (Upd i_p k_p ops_p', Upd i_gq k_q ops_q')
else (p,q)
trans' p@(Del i_p k_p) q@(Del i_qg k_q)
*\\1j\§rp == k_qg then (None,None) else (p,q)
—— Dé® is preferred to Upd
trans' p@(Upd i_p k_p ops_p) q@(Del i_q k_q)
if k_p k_q then (None,q) else (p,q)
trans' p@(Del i_p k_p) g@(Upd i_g k_g ops_q)
if k_p == k_q then (p,None) else (p,q)
trans' None q (None, q)
trans' p None (p,None)

applyOp None d = (d,None)

16

CCR lmplcmentation of Local-First Social Media APPIication (2)
o Upclating operations of the Map are Upd and Del :

~ Upd k quadOp upcjlatcs the c]uaclruple
~ Del k deletes the quadruple with k as th

with the MaP keg k bg quadOp for c]uaclruples.
e MaP keg

takeichi@Bowmore MAP_QUAD % ./MAP_QUAD 9001
*xxx CCDSAgent Ver6.3 for Map QUAD (2025/03/08) sxxx

* Agent Started on Port 9001
#1: Conn 9000
* Connection
Connections=

ﬁa@@@ started Upd speciﬁes Key and quadO

takeichi@Bowmore MAP_QUAD % ./MAP_QUAD 9000
x*x*x CCDSAgent Ver6.3 for Map QUAD (2025/03/08) sxx
* Agent Started on Port 9000

@P#1: Conn 9001

*x Connection %?001 started

Connections=
#2: Upd 1 (Write "XYZ";Add "AB";Incr 6,Decr 2; Decr 3) _
< Sent 085 [Upd $1 1:[QuadOp $1 [Write $1 {“XYZ"}]...]]1 — %> Received Ops [Upd $1 1:[QuadOp $1 [Write $1 {"XYZ"}]...]]
to $9000 from $9001
ﬁégﬁiﬂgw{ QUAD stored with keg l ﬁégli'ggw{
Data= <1:({"XYz"},{"AB"},4,-3, << » Data= <1:({"Xyz"},{"AB"},4,-3)>

Rev}s,= 1
Connections= [$9000+:(1..21]1(1..11]

> Received Ops [Upd $0 2:[QuadOp $0 [Write $0 {“UV"}]...]

Revi= 1
Connections= [$9001+:(1..1]1(1..11]

from $9000

#4: Show QUAD stored with keg 2
Replica {

Data= <1:({"XYz"},{"AB"},4,-3),2: ({"Uuv"},{"C"},-1,5)><—
Revs= 2 -«

#3: Upd 2 (Write "UV";Add "C";Decr 1;Incr 5)

< Sent Ops [Upd $0 2:t0uad0p $0 [Write $0 {"UV"}]...1]
to $9001

#4: Show

Replica {

& Data= <1:({"Xyz"},{"AB"},4,-3),2:({"uv"},{"C"},-1,5)>
Revs= 2

Connections= [$9000+: (2..2](2..2]]
> Received Ops [Del $0 1] from $9000

Element with Keg 1 has been removed

Céﬁﬁéctions= [$9001+: (2..2](2..21]

#5: Del 1%
< Sent Ops [Del $0 1] to $9001

Del speciﬁes the keg onlg

#5: Show
Replica { #6: Show
Data= <2:({"UVv"},{"C"},-1,5)> «— Replica {
Revs= 3 Rata= ;2:({"UV"},{”C"},—1,5)>
evs=

Connections= [$9000+: (3..3](3..3]]

Céﬁﬁgctions= [$9001+: (3..31(3..3]]

19

CCR lmplementation of Local-First Social Media Application 3)
e The first component of QUAD is of Replica type LWW_String | which keeps both

values as set elements when which of the concurrent uPclates cannot be determined
as the Last-Writer.

#10: Show #10: Show
Replica { Replica {
Data= <2:({"uv"},{"C"},-1,5)> Rata= ;2:({"UV"},{"C"},—1,5)>
evs=

Revs= 5) I

e Simulate concurrent T
ith ¢ > |C tions= [$9001+:(5..5](5..5

%onnectionsz [$9000+: (5..5]1(5..51] ul:)clates with Delag onnections= [$ +1 (1 (11

1: Delay 30
#11: Delay 30 <«— * Agent delays 30 sec. before accepts Patch
* Agent delays 30 sec. before accepts Patch

#12: Upd 1 (Write "H";None;None;None)

#12: Upd 1 (Write "G";None;None;None) Sent Ops [Upd $0 1:[QuadOp $0 [Write $0 {"H"}1...1]
< gent Ops [Upd $1 1:[QuadOp $1 [Write $1 {"G"}] ... = 36 9001 PHHadTP e
to $9000 ~3 Received Ops [Upd $1 1:[QuadOp $1 [Write $1 {"G"}]...]]
MH"}]...]

_ _ from $9001
> Received Ops [Upd $0 1:[QuadOp $0 [Write $0

from $9000 -
Both are stored as the QUAD with keg I #13: Show

#13: Show
Replica { {r’///////
Data= <1:({"G","H"},{},0,0),2:({"Uv"},{"C"},-1,5)>

Revs= 7

Data= <1: ", "H"},{},0,0),2: ({"UVv"},{"C"},-1,5)>
Revs= 7

céﬁﬁéctions= [$9001+: (7..71(7..7]1]

Connections= [$9000+:(7..71(7..711]

More to do for
Coordination-free Collaborative Data Sharing

Proving TPI+TP2 Pro!:)erties of OT and Reasoning about

“Comquence”

Putting forward the claim on “Monotonic:itg s not, but

Confluence is”

De\/elo!:)ing Privacg~Preserving/ | ocal-First Software with

Dejiima Architecture

21 l

More to do for
Coordination-free Collaborative Data Sharing

Provi ng, TPI+TP2 Prol:)erties of OT
and

Reasoning about “Confluence”

22

OT for Coordination-free Collaborative Replication

How to Replicate Co”aborativelg with Conflict resolution

=> Replica’ce local upcﬂates with conflict resolution

p
PHq Do /
% q Ap)/ }<\1A

D@p@C]p_DQQQPCI // p2

(pq7 Qp):TD(p’ Q)

OPerationaI Transformation Ty, with
Compositional TPI-Confluence

defines collaborative operator #p,

How to Replicate Co”aborativelg without Coordination

=> Rel:)licate confluent ul:)clating oPerations for coordination avoidance

e
.
.
.
.
.
‘e
.

.
.
‘e

p#q) #r
=p(q#r)#p
=p(r#p)#q

TP2-Confluence guarantees #s
ldempotence, Associativity and

Commutativitg

Building up Confluence with OT |

Tp::0x0— 0xO0, (pgaq) = Tpo(p, q) for p in site
P and g in Q fulfills TPI1-Confluence p © q, <+p q © py,
written as p#pq, also as p#qg when D Is obvious.

@ Ildempotence When P and @ share p applied to D to
get the confluent state D @ p and hence p#pp = p.

@ Commutativity It is straightforward that

p#pq = q#pp tor p and g on D.

@ Associativity To establish the confluence property of
I'p applied in two steps for updates on D by three
sites, the relations should hold regardless of the
application order:

(p#pq)#or = (p#pr)#09q. (#pr)#op = (9#DP)#DT,
and (r#pp)#pq = (r#pq)#pP.

Masato Takeichi (takeichi@acm.org) September 16, 2024 13 /36

24

Algebraic Structure of Confluence Property
o ldentity element p#p! = #pp =p p.

@ ldempotence p#pp = p, which comes from the
Minimal Property of Tp

@ Commutativity p#pqg = g#pp, which comes from
the TP1-Property of Tp

o Associativity (p#pq)#pr = p#p(qg#pr), which is
required for the TP2-Property of Tp

v

The Algebraic Structure of Confluence Property suggests
us to put the TP2-Confluence Property into practical
coordination-free replication by sending updated
operations on the common replicated data in any order
to others.

Masato Takeichi (takeichi@acm.org) Coordination-free Collaborative Replication bz September 16, 2024 17 / 36

25

f

More to do for
Coordination-free Collaborative Data Sharing

Putting forward the claim on

“Monotonicity is not, but Confluence is”

Confluence for Coordination-freeness
L Monotonicitg is not the onlg golclen rule for coordination-free

collaborative rel:)lication, while the CALM theorem |ags stress on this as in
J. M. Hellerstein and P Alvaro. Keeping CALM: when distributed
consistency is easy. Communications of the ACM, 65(9):72-81, 2020.

o The I:>rocnC sketc:h states that the comquence Propertg of the oPeration IS

a generaliza’tion of commutativity, that IS, the order of its operands makes

no difference to the result.

~ An operation is confluent if it Procluces the same outputs for any
nondeterministic orclering of a set of inPuts.

~ I the outPuts of one confluent ol:)eration are consumed 199 another
confluent operator as inPuts, the resulting comPosite ol:)eration IS
confluent.

~ Hence, i we build programs bg comPosing corfluent oPerations, our
programs are confluent !35 construction, clesl:)ite orclerings of
messages or execution steps within and across distributed sites.

o (CCR actua”g realizes the confluence Propert9 139 implementing confluent
operations with OT and therefore “CALM” should be superseclecl bﬂ

“Consistencg 153 Constructing Confluent Ol:)era’tions”.
27

Confluence rather than Monotonicitg

e While coordination is a “killer” of Pem[ormance in distributed systems, no
coordination may suffer from the consistency of distributed data.
e The CALM (Consistencg As Logical Monotonicitg) theorem brings
about a solution to the question
“What is the Familg of Prob!ems that can be consistentlg com[:)utecl in
a distributed fashion without coordination, and what lies outside that
Familg?”

as
A program has a consistent, coordination-free distributed
implementation it and onlg if it is monotonic.”

e Since confluent oPcrations are the basic constructs of monotonic
systems, theg can do more than that if collaboration is utilized for
establishing confluence of components of distributed systems.

o Thus, we should shatter the CALM of monotonicitg to open the door to
claim that the same holds for programs composecl of confluent

operations like CCR.
28

Confluence Operation for Coordination-freeness
o The l:)rooF sketch states that the confluence Propertg of the ol:)eration 1S

a generalization of commutativity, that IS, the order of its oPerands

makes no difference to the result.

~ An oPeration is confluent if it Procluces the same outputs for any
nondeterministic orclering of a set of inputs.

~ The CCR replication Proceclure is confluent since it Produces the
same replicate& data for any nondeterministic ordering of a set of
concurrent upclates.

~ 1f the outPuts of one confluent oPeration are consumed !:)9 another
confluent operator as inPu’c@ the resulting comPosite oPeration IS
corfluent.

~ Hence, if we build programs by coml:)osing confluent oPerationsJ our

programs are confluent bg construction, cespite or&erings of

messages or execution stelos within and across distributed sites.
o Confluence of CCR also satisfies above Properties and “CALM?” should

be suPerseclecl !33 “Consistencg 59 Confluence”.

29 f

More to do for
Coordination-free Collaborative Data Sharing

Develol:)i ng, Privacg-Preservi ng, | ocal-First Software
with ijima Architecture

50

Coordination-free Collaborative Dejima Data Sharing
for Privacg»-Preservi ng | ocal-First Software M

L Dejima Architecture manages selective P2P data sharing using Bidirectional

Transformation between the local Base table and shared Dejima tables

between distributed Peers.

e Combined with CCR, Dejima architecture strengthens Privacg of the Local-

First Software.

\\\

Base
tables B;

i
1]

[=

5 &

~ Peer P;

Peer P; —

@

Base
tables B;
il

iR !

/

Peer P,

Peer Py Ill \
S O T:
BX between source S
and targetT
By simple data
ﬁ synchronization

Ishihara, Y., Kato, H., Nakano, K., Onizuka, M., & Sasaki, Y. (2019). Toward BX-based
architecture for contro”ing and sharing distributed data. In 2019 IEEE BigComP.
https://cloi.org/lO.HO9/E5|GCOM13.2019.8679145

bl

Coordination-free Collaborative Dejima Data Sharing

for Privacy~Preservi ng | ocal-First Software (2)

e In Site P, uPclates 7 on the Base table Bp are transformed by the forward
transformation get, to get each Dejima table D, that can be replicatecl with
Dejima tables D, of other Sites O using Coordination-free Collaborative

Replication.
e The replicatecl Dejima Dp is put back to the Base table as B), bﬂ the backward

transformation put,.

Site P B, Cogféstt:nt B, Site O

BpOpOgetp©q,Oputp (BpOp) ByOgoget,0Op,0puty (ByOg)
Consistent State

Coordination-free Collaborative Dejima Data 5|naring 0
52

