
IPL 2025 Workshop on Foundations of Software
March 22, 2025

Masato Takeichi
“Coordination-free Collaborative Replication

based on Operational Transformation”

Masato Takeichi. “Coordination-free Collaborative Replication based on
Operational Transformation”, September 16, 2024, Last Revised December 15
(version 3) arXiv:2409.09934v3. https://doi.org/10.48550/arXiv.2409.09934

https://doi.org/10.48550/arXiv.2409.09934

2

• Consider a real-world example of distributed data sharing: Peers and
have their local data and to be appropriately “replicated”.
- and have replicas and as instances of the common set data.
- and update and respectively whether or not the network

connection is alive, and they try to get the new common states and
 during the connection is alive.

• Each peer adds element into its local replica (written as) and removes
element from the replica (written as), and sends these operations to
the partner peer. This is the basic updating process of the peers.

• The peer receives remote operations sent from the partner peer and puts
them on its local replica so that it becomes same as that of the partner
peer.

• What happens in the events:
1. Start with .
2.Connection fails.
3. does and then .
4. does and .
5.Connection is restored.

P Q
DP DQ

P Q DP DQ
P Q DP DQ

D′￼P
D′￼Q

x ⊕ x
x ⊖ x

D

DP=DQ = {𝖠, 𝖡}

P ⊕ 𝖢 ⊖ 𝖢
Q ⊖ 𝖡 ⊕ 𝖢

A Short Story

- How and are replicated into and ?
- What is the result after step 5?

‣ Is , or ?

‣ Is , or ?
- Is it pertinent and appropriate by sound

reasoning ?

DP DQ D′￼P D′￼Q

D′￼P = {𝖠, 𝖡} D′￼P = {𝖠, 𝖢}
D′￼Q = {𝖠, 𝖢} D′￼Q = {𝖠, 𝖡, 𝖢}

How can we keep distributed replicated data consistent?

3

Ask CCRAgent
for Consistent

Replication

*** CCRAgent Ver6.3 for ESET_String (2025/01/13) ***

* Agent Started on Port 9001

#1: Conn 9000

* Connection $9000 started

> Received Ops [Add $0 "A",Add $0 "B"] from $9000

#2: Show

Replica {

 Data= {"A","B"}

 …}

Connections= [$9000+:(2..2](2..2]]

#3: Delay 30

* Agent delays 30 sec. before accepts Patch

#4: Rem “B", Add "C"

< Sent Ops [Rem $1 "B",Add $1 "C"] to $9000

> Received Ops [Add $0 "C",Rem $0 "C"] from $9000

< Sent Ops [Rem $1 "B",Add $1 "C",Rem $0 "C"] to $9000

> Received Ops [Add $0 "C",Rem $0 "C",Rem $1 “B"]

 from $9000

#5: Show

Replica {

 Data= {"A"}

 Revs= 5

 UpdLog= [Add $0 "A",Add $0 "B",Rem $1 "B",Add $1 “C",

 Rem $0 "C"]

 …}

Connections= [$9000+:(5..5](5..5]]

**** CCRAgent Ver6.3 for ESET_String (2025/01/13) ***

* Agent Started on Port 9000

#1: Conn 9001

* Connection $9001 started

#2: Add “A", Add "B"

< Sent Ops [Add $0 "A",Add $0 "B"] to $9001

#3: Show

Replica {

 Data= {"A","B"}

 …}

#4: Delay 30

* Agent delays 30 sec. before accepts Patch

#5: Add “C", Rem "C"

< Sent Ops [Add $0 "C",Rem $0 "C"] to $9001

> Received Ops [Rem $1 "B",Add $1 "C"] from $9001

< Sent Ops [Add $0 "C",Rem $0 "C",Rem $1 "B"] to $9001

> Received Ops [Rem $1 "B",Add $1 "C",Rem $0 “C"]

 from $9001

#6: Show

Replica {

 Data= {"A"}

 Revs= 5

 UpdLog= [Add $0 "A",Add $0 "B",Add $0 "C",Rem $0 “C",

 Rem $1 "B"]

 …}

Connections= [$9001+:(5..5](5..5]]

① Start with .
② Connection fails.
③ does and then .
④ does and .
⑤ Connection is restored.

DP=DQ = {𝖠, 𝖡}

P ⊕ 𝖢 ⊖ 𝖢
Q ⊖ 𝖡 ⊕ 𝖢

- What is the result after step 5?
‣ Is , or ?
‣ Is , or ?

- Is it pertinent and appropriate?

D′￼P = {𝖠, 𝖡} D′￼P = {𝖠, 𝖢}
D′￼Q = {𝖠, 𝖢} D′￼Q = {𝖠, 𝖡, 𝖢}

①

②②
③④

⑤ ⑤

Why not ?{𝖠, 𝖢}

4

p qDPeer P Peer Q

D⊙qD⊙p

D

D′￼= (D⊙p)⊔(D⊙q)

p q
DPeer P Peer Q

D⊙qD⊙p
pqqp

D′￼= (D⊙p)⊙qp=(D⊙q)⊙pq

D

 (pq, qp) = TD(p, q)

 p#Dq

Problems to be solved for Consistent Replication

CRDT Solution
• Predefined “merge” on produces the

next baseline from .
• and must be conformable to defined

on partially ordered set with element-
wise operation .
- Set : for into .
- Counter : for to
- Max : for of and .

⊔ 𝒟
D′￼∈ 𝒟 D ∈ 𝒟

p q ⊔
𝒟

⊙ x
𝒟 ⊙ x = ∪ {x} insert x D

𝒟 ⊙ x = + x add x
𝒟 ⊙ x = ↑ x max x D

• Local replicated data in and in may be concurrently
updated by to produce and by to produce .

• Given the Lastly Replicated Common State as the “baseline”, how
can we make and consistent for the next baseline ?

DP ∈ 𝒟 P DQ ∈ 𝒟 Q
p DP⊙p ∈ 𝒟 q DQ⊙q ∈ 𝒟

D ∈ 𝒟
D⊙p D⊙q D′￼∈ 𝒟

OT-based Solution
• produces for

generating the “confluent” operation
 which makes into the next

baseline .
- and are concrete

representations of .
• must satisfy TP1 and TP2

properties for Consistency and
Coordination Avoidance.

TD(p, q) (pq, qp)
p

#Dq D ∈ 𝒟
D′￼∈ 𝒟

p⊙qp q ⊙pq
p#Dq

TD(p, q)

5

Keep CALM and CRDT On

Shadaj Laddad∗

University of California, Berkeley
shadaj@cs.berkeley.edu

Conor Power∗

University of California, Berkeley
conorpower@cs.berkeley.edu

Mae Milano
University of California, Berkeley

mpmilano@cs.berkeley.edu

Alvin Cheung
University of California, Berkeley

akcheung@cs.berkeley.edu

Natacha Crooks
University of California, Berkeley

ncrooks@cs.berkeley.edu

Joseph M. Hellerstein
University of California, Berkeley

hellerstein@cs.berkeley.edu

ABSTRACT

Despite decades of research and practical experience, developers
have few tools for programming reliable distributed applications
without resorting to expensive coordination techniques. Con!ict-
free replicated datatypes (CRDTs) are a promising line of work
that enable coordination-free replication and o"er certain eventual
consistency guarantees in a relatively simple object-oriented API.
Yet CRDT guarantees extend only to data updates; observations of
CRDT state are unconstrained and unsafe. We propose an agenda
that embraces the simplicity of CRDTs, but provides richer, more
uniform guarantees. We extend CRDTs with a query model that
reasons about which queries are safe without coordination by ap-
plying monotonicity results from the CALM Theorem, and lay out
a larger agenda for developing CRDT data stores that let developers
safely and e#ciently interact with replicated application state.

PVLDB Reference Format:

Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, Natacha Crooks,
and Joseph M. Hellerstein. Keep CALM and CRDT On. PVLDB, 16(4): 856 -
863, 2022.

doi:10.14778/3574245.3574268

1 INTRODUCTION

Consistency is a central theme of distributed computing research,
with major implications for practitioners. Modern cloud-hosted
applications are frequently distributed to optimize for latency and
availability. When application state is replicated across the globe,
developers often face stark choices regarding replica consistency.
Strong consistency can be enforced in a general-purpose way via
classical distributed coordination (consensus, transactions, etc.),
but this is often unattractive for latency and availability reasons.
Alternatively, application developers can build on “weakly” con-
sistent storage models that do not use coordination; in this case
developers must reason about consistency at the application level.

The last decade has seen a surge of research interest in rea-
soning about application consistency, featuring everything from
complex formal invariants [54] to multi-tiered consistency annota-
tions [19, 40] to explicit happens-before annotations on operations
[12]. In recent years, one approach has risen above the noise among

∗equal contribution
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 4 ISSN 2150-8097.
doi:10.14778/3574245.3574268

practitioners: Con!ict-Free Replicated Data Types [52]. CRDTs are
provided as an API by a few commercial platforms (e.g., Enterprise
Redis, Akka, Basho Riak [7, 27, 48]), and have been documented in
use by a number of products and services including PayPal, League
of Legends, and Soundcloud [6, 18, 38]. There is also are a growing
set of open source CRDT packages that have thousands of stars on
GitHub [25, 26, 43], and blog posts explaining CRDTs to developers
in pragmatic, informal terms [13, 49, 57].

The attractiveness of CRDTs lies in their combination of (1) an
easy-to-explain API, and (2) the promise of formal safety guarantees.
Designing a CRDT centers around providing a function to merge
any two replicas, with the requirement that this single function
is associative, commutative and idempotent (ACI), and de$ning
atomic operations that clients can use to update a replica. From the
user’s perspective, the CRDT’s object-oriented API often mimics a
familiar collection; many of the CRDTs in the literature are simple
adaptations of well-known data types like Sets and Counters.

The formal safety properties of CRDTs, as originally phrased by
Shapiro et al, leverage “a well de$ned interface ... [with] mathe-
matically sound rules to guarantee state convergence” [52]. This
guarantee is achieved via the ACI properties of the merge function.
Classic anomalies in eventually consistent systems are caused by
reordered, duplicated, or late-arriving updates—none of which can
a"ect an idempotent, commutative, and associative function.

But this strong convergence guarantee addresses only state up-
dates and o"ers no APIs (or guarantees!) for visibility into the state
of a CRDT. Although useful queries are often included in the pre-
sentation of CRDT designs, these have no impact on the correctness
of the CRDT and are no safer to use than arbitrary queries executed
directly on the underlying state. In one of the precursor papers
to CRDTs that also proposes ACI merge functions, Helland and
Campbell go as far as noting ironically that READs are “annoying”
and may not commute with other actions [15].

Example 1 (The P()a)(and)he Fe,,a,-, a...a. Ea,ly Read).
A canonical CRDT is the Two-Phase Set (2P-Set) [51], which is a pair
of sets (!,") that track items to be added (!) and removed ("). The
merge function for two 2P-Sets is de!ned simply as the pairwise union,
(!1 ∪!2,"1 ∪ "2) and is patently ACI. This scheme was used in the
well-known Amazon Dynamo shopping cart example [11].

Implicit in this design is a query# = !−" returning the intended
contents of the set. Consider a scenario where a shopper adds a potato
and a Ferrari to their cart, then removes the Ferrari, and “checks out”
by computing the query # . In one or more replicas of the 2P-Set, the
checkout request could arrive before the removal of the sports car. This
truly expensive consistency bug arises when the query “reads” the
state of the 2P-Set “too early”, before all the removals have eventually

856

Shadaj Laddad, et.al. “Keep
CALM and CRDT On”. PVLDB,
16(4): 856-863, 2022

Keep CALM and CRDT On

Shadaj Laddad∗

University of California, Berkeley
shadaj@cs.berkeley.edu

Conor Power∗

University of California, Berkeley
conorpower@cs.berkeley.edu

Mae Milano
University of California, Berkeley

mpmilano@cs.berkeley.edu

Alvin Cheung
University of California, Berkeley

akcheung@cs.berkeley.edu

Natacha Crooks
University of California, Berkeley

ncrooks@cs.berkeley.edu

Joseph M. Hellerstein
University of California, Berkeley

hellerstein@cs.berkeley.edu

ABSTRACT

Despite decades of research and practical experience, developers
have few tools for programming reliable distributed applications
without resorting to expensive coordination techniques. Con!ict-
free replicated datatypes (CRDTs) are a promising line of work
that enable coordination-free replication and o"er certain eventual
consistency guarantees in a relatively simple object-oriented API.
Yet CRDT guarantees extend only to data updates; observations of
CRDT state are unconstrained and unsafe. We propose an agenda
that embraces the simplicity of CRDTs, but provides richer, more
uniform guarantees. We extend CRDTs with a query model that
reasons about which queries are safe without coordination by ap-
plying monotonicity results from the CALM Theorem, and lay out
a larger agenda for developing CRDT data stores that let developers
safely and e#ciently interact with replicated application state.

PVLDB Reference Format:

Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, Natacha Crooks,
and Joseph M. Hellerstein. Keep CALM and CRDT On. PVLDB, 16(4): 856 -
863, 2022.

doi:10.14778/3574245.3574268

1 INTRODUCTION

Consistency is a central theme of distributed computing research,
with major implications for practitioners. Modern cloud-hosted
applications are frequently distributed to optimize for latency and
availability. When application state is replicated across the globe,
developers often face stark choices regarding replica consistency.
Strong consistency can be enforced in a general-purpose way via
classical distributed coordination (consensus, transactions, etc.),
but this is often unattractive for latency and availability reasons.
Alternatively, application developers can build on “weakly” con-
sistent storage models that do not use coordination; in this case
developers must reason about consistency at the application level.

The last decade has seen a surge of research interest in rea-
soning about application consistency, featuring everything from
complex formal invariants [54] to multi-tiered consistency annota-
tions [19, 40] to explicit happens-before annotations on operations
[12]. In recent years, one approach has risen above the noise among

∗equal contribution
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 4 ISSN 2150-8097.
doi:10.14778/3574245.3574268

practitioners: Con!ict-Free Replicated Data Types [52]. CRDTs are
provided as an API by a few commercial platforms (e.g., Enterprise
Redis, Akka, Basho Riak [7, 27, 48]), and have been documented in
use by a number of products and services including PayPal, League
of Legends, and Soundcloud [6, 18, 38]. There is also are a growing
set of open source CRDT packages that have thousands of stars on
GitHub [25, 26, 43], and blog posts explaining CRDTs to developers
in pragmatic, informal terms [13, 49, 57].

The attractiveness of CRDTs lies in their combination of (1) an
easy-to-explain API, and (2) the promise of formal safety guarantees.
Designing a CRDT centers around providing a function to merge
any two replicas, with the requirement that this single function
is associative, commutative and idempotent (ACI), and de$ning
atomic operations that clients can use to update a replica. From the
user’s perspective, the CRDT’s object-oriented API often mimics a
familiar collection; many of the CRDTs in the literature are simple
adaptations of well-known data types like Sets and Counters.

The formal safety properties of CRDTs, as originally phrased by
Shapiro et al, leverage “a well de$ned interface ... [with] mathe-
matically sound rules to guarantee state convergence” [52]. This
guarantee is achieved via the ACI properties of the merge function.
Classic anomalies in eventually consistent systems are caused by
reordered, duplicated, or late-arriving updates—none of which can
a"ect an idempotent, commutative, and associative function.

But this strong convergence guarantee addresses only state up-
dates and o"ers no APIs (or guarantees!) for visibility into the state
of a CRDT. Although useful queries are often included in the pre-
sentation of CRDT designs, these have no impact on the correctness
of the CRDT and are no safer to use than arbitrary queries executed
directly on the underlying state. In one of the precursor papers
to CRDTs that also proposes ACI merge functions, Helland and
Campbell go as far as noting ironically that READs are “annoying”
and may not commute with other actions [15].

Example 1 (The P()a)(and)he Fe,,a,-, a...a. Ea,ly Read).
A canonical CRDT is the Two-Phase Set (2P-Set) [51], which is a pair
of sets (!,") that track items to be added (!) and removed ("). The
merge function for two 2P-Sets is de!ned simply as the pairwise union,
(!1 ∪!2,"1 ∪ "2) and is patently ACI. This scheme was used in the
well-known Amazon Dynamo shopping cart example [11].

Implicit in this design is a query# = !−" returning the intended
contents of the set. Consider a scenario where a shopper adds a potato
and a Ferrari to their cart, then removes the Ferrari, and “checks out”
by computing the query # . In one or more replicas of the 2P-Set, the
checkout request could arrive before the removal of the sports car. This
truly expensive consistency bug arises when the query “reads” the
state of the 2P-Set “too early”, before all the removals have eventually

856

tombstone
set

• Intended Contents of the
2P-Set =

• Cannot effectively add
items into the Cart (Set) if
they have been once
added and then removed.

A − R

Shopping Cart Problem in CRDT implementation

Current Trend in Replicated Data
Sharing

6

Demonstration of Two-Phase Set
CRDT in Haskell

Grow-Only Set

2P-Set paired
with two GSet

(A, R)

ghci> d_p

(fromList ["A","B","C"],fromList ["B"])

ghci> d_q

(fromList ["D"],fromList ["A"])

ghci> value d_p

fromList ["A","C"]

ghci> value d_q

fromList ["D"]

ghci> merge d_p d_q

(fromList ["A","B","C","D"],fromList ["A","B"])

ghci> value it

fromList ["C","D"]

ghci> insert "B" d_p

(fromList ["A","B","C"],fromList ["B"])

ghci> value d_p

fromList ["A","C"]

DP = ({𝖠, 𝖡, 𝖢}, {𝖡})

DQ = ({𝖣}, {𝖠})

2P-Set represents Set DP {𝖠, 𝖢}
2P-Set represents Set DQ {𝖣}

 DP ⊔ DQ = ({𝖠, 𝖡, 𝖢, 𝖣}, {𝖠, 𝖡})

 represents DP ⊔ DQ {𝖢, 𝖣}

 is added again
into
𝖡

DP

But has not been added to Set𝖡

CRDT can represent grow-able data only!

7

• OT, originally proposed in 1989, has
been kept away from replicated
d a t a s h a r i n g s i n c e m o s t o f
algorithms were proved wrong.

• In OT-based replication,
① Updating process is broken into a

patch of operations transmitted
between sites.

② In each site, incoming operations
are transformed to get the local
operations to be performed since
the baseline (last common state).

③ They are then applied locally to
get the new baseline.

 Rebirth of Operational Transformation in Replicated Data Sharing

Martin Kleppmann, CRDTs and the Quest for Distributed
Consistency
A talk at QCon London, London, UK, 05 Mar 2018
https://martin.kleppmann.com/2018/03/05/qcon-london.html

• For complex RTCE (Realtime Collaborative Editor) operations, transformation have
edge cases difficult to ensure producing the confluent baseline. However, it is not
difficult in carefully selected operations with the assumption of collaboration.

• CCR (Coordination-free Collaborative Replication) is a challenge against the trends.

https://martin.kleppmann.com/2018/03/05/qcon-london.html

8

Masato Takeichi. “Coordination-free Collaborative Replication based on Operational
Transformation”, September 16, 2024, Last Revised December 15 (version 3)
arXiv:2409.09934v3. https://doi.org/10.48550/arXiv.2409.09934

Coordination-free Collaborative Replication

based on Operational Transformation

Masato Takeichi

University of Tokyo
takeichi@acm.org

Abstract. We introduce Coordination-free Collaborative Replication
(CCR), a new method for maintaining consistency across replicas in dis-
tributed systems without requiring explicit coordination messages. CCR
automates conflict resolution, contrasting with traditional data sharing
systems that typically involve centralized update management or prede-
fined consistency rules.
Operational Transformation (OT), commonly used in collaborative edit-
ing, ensures consistency by transforming operations while maintaining
document integrity across replicas. However, OT assumes server-based
coordination, which is unsuitable for modern, decentralized Peer-to-Peer
(P2P) systems.
Conflict-free Replicated Data Type (CRDT), like Two-Phase Sets (2P-
Sets), guarantees eventual consistency by allowing commutative and as-
sociative operations but often result in counterintuitive behaviors, such
as failing to re-add an item to a shopping cart once removed.
In contrast, CCR employs a more intuitive approach to replication. It
allows for straightforward updates and conflict resolution based on the
current data state, enhancing clarity and usability compared to CRDTs.
Furthermore, CCR addresses ine!ciencies in messaging by developing
a versatile protocol based on data stream confluence, thus providing a
more e!cient and practical solution for collaborative data sharing in
distributed systems.

1 Introduction

We propose a novel idea of Coordination-free Collaborative Replication (CCR)
that guarantees the consistency of replicas under individual updates in dis-
tributed systems. It makes automatic conflict resolution without any explicit
message exchange for coordination.

Operational Transformation [1,12,13] is a technology to guarantee consis-
tency when updating common data in collaborative data sharing. For example,
we put a replica of a text document at each site for editing. Each site sends the
editing operations done on the local replica to the server. The server transmits
operations to other clients to keep all the replicas the same in distributed envi-
ronments. Each site appropriately applies the editing operations sent from the
server to its local replica. For the transformation of text editing, the basic op-
erations of inserting and deleting character strings and moving the cursor keeps

ar
X

iv
:2

40
9.

09
93

4v
2

 [c
s.D

C]
 1

2
D

ec
 2

02
4

Coordination-free Collaborative Replication

based on Operational Transformation

Masato Takeichi

University of Tokyo
takeichi@acm.org

Abstract. We introduce Coordination-free Collaborative Replication
(CCR), a new method for maintaining consistency across replicas in dis-
tributed systems without requiring explicit coordination messages. CCR
automates conflict resolution, contrasting with traditional data sharing
systems that typically involve centralized update management or prede-
fined consistency rules.
Operational Transformation (OT), commonly used in collaborative edit-
ing, ensures consistency by transforming operations while maintaining
document integrity across replicas. However, OT assumes server-based
coordination, which is unsuitable for modern, decentralized Peer-to-Peer
(P2P) systems.
Conflict-free Replicated Data Type (CRDT), like Two-Phase Sets (2P-
Sets), guarantees eventual consistency by allowing commutative and as-
sociative operations but often result in counterintuitive behaviors, such
as failing to re-add an item to a shopping cart once removed.
In contrast, CCR employs a more intuitive approach to replication. It
allows for straightforward updates and conflict resolution based on the
current data state, enhancing clarity and usability compared to CRDTs.
Furthermore, CCR addresses ine!ciencies in messaging by developing
a versatile protocol based on data stream confluence, thus providing a
more e!cient and practical solution for collaborative data sharing in
distributed systems.

1 Introduction

We propose a novel idea of Coordination-free Collaborative Replication (CCR)
that guarantees the consistency of replicas under individual updates in dis-
tributed systems. It makes automatic conflict resolution without any explicit
message exchange for coordination.

Operational Transformation [1,12,13] is a technology to guarantee consis-
tency when updating common data in collaborative data sharing. For example,
we put a replica of a text document at each site for editing. Each site sends the
editing operations done on the local replica to the server. The server transmits
operations to other clients to keep all the replicas the same in distributed envi-
ronments. Each site appropriately applies the editing operations sent from the
server to its local replica. For the transformation of text editing, the basic op-
erations of inserting and deleting character strings and moving the cursor keeps

ar
X

iv
:2

40
9.

09
93

4v
2

 [c
s.D

C]
 1

2
D

ec
 2

02
4

A New Approach to Collaborative Replication

https://doi.org/10.48550/arXiv.2409.09934

CCRAgent for ESET_String : Adding and Removing Strings to/from Set

9

takeichi@Bowmore ESET_String % ./ESET_String 9000

* Agent Started on Port 9000

Listening on http://127.0.0.1:8000

* CCRAgent Started for ESET_String (2025/01/13)

…

#1: Add "X"

#2: Add "Y"

#3: Show

Replica {

 Data= {"X","Y"}

 Revs= 2

 UpdLog= [Add $0 "X",Add $0 “Y"]

 Delay= 0

 Verbose= False}

Connections= []

#4: Rem "X"

#5: Show

Replica {

 Data= {"Y"}

 Revs= 3

 UpdLog= [Add $0 "X",Add $0 "Y",Rem $0 "X"]

 Delay= 0

 Verbose= False}

Connections= []

#6: Rem "W"

#7: Show

Replica {

 Data= {"Y"}

 Revs= 3

 UpdLog= [Add $0 "X",Add $0 "Y",Rem $0 "X"]

 Delay= 0

 Verbose= False}

Connections= []

type ElemType = String
type ReplicaData = [ElemType]

data Replica = Replica
 { replicaData :: ReplicaData
 , replicaPatch :: Patch
 , replicaRev :: RevIndex -- Revision index
 , replicaDelay :: Int -- Delay d*1000000 sec.
 , replicaVerbose :: Bool
 }
initReplica = Replica
 { replicaData = []
 , replicaPatch = []
 , replicaRev = 0
 , replicaDelay = 0
 , replicaVerbose = False
 }

data Op
 = Add ReplicaID ElemType
 | Rem ReplicaID ElemType
 | None
 deriving (Eq)

effectfulOp :: Op -> ReplicaData -> Op
effectfulOp op@(Add _ x) d =
 if List.elem x d then None else op
effectfulOp op@(Rem _ x) d =
 if List.elem x d then op else None
effectfulOp None d = None

transOp :: ReplicaData -> Op -> Op -> (Op, Op)
transOp d p q =
 let p' = effectfulOp p d
 q' = effectfulOp q d
 in
 if p'==q' then (None, None) else (p’,q')

Updating operations are Add, Rem and None

non-effectful update None for “no-op”

OT produces additional ops
p’ and q’ to be performed

Add “Y” after Add “X” is effectful

Rem “X” is effectful

“X” has been removed

Rem “W” is non-effectful

“effectful” means that
the operation effectively
updates the state

10

Development of Local-First Data Sharing
- Designing the application state with

replication-awareness
- Efficient messaging in given target

network topology
- Security of exchanged data

Martin Kleppmann, Adam Wiggins, Peter van
Hardenberg, and Mark McGranaghan. Proc.
2019 ACM Onward’19.
https://doi.org/10.1145/3359591.3359737

Christian Kuessner, et.al., “Algebraic Replicated
Data Types: Programming Secure Local-First
Software”. ACM ECOOP 2023.
https://doi.org/10.1145/3359591.3359737

More Realistic Example follows …

Data Sharing in “Local-First” Software

Development of Local-First Data Sharing

11

Used by a group of friends in a peer-to-peer
network to share messages, comments, likes,
and dislikes.

C. Kuessner, R. Mogk, A.-K. Wickert, and M. Mezini 14:7

1 case class SocialMedia (sm: Map[ID , SocialPost]):
2 def like(post: ID , replica : ReplicaID): SocialMedia =
3 val increment = sm(post).likes.inc(replica)
4 SocialMedia (Map(post -> SocialPost (likes = increment)))
5

6 case class SocialPost (message : LWW[String], comments :
Set[LWW[String]], likes: Counter , dislikes : Counter)

Figure 2 Compositional design of the social media ARDTs.

7 case class Counter (c: Map[ReplicaID , Int]):
8 def value: Int = c. values .sum
9 def inc(id: ReplicaID): Counter =

10 Counter (Map(id -> (c. getOrElse (id , 0) + 1))
11

12 object Counter : // object for static methods
13 def zero: Counter = Counter (Map.empty)

Figure 3 The state and operators of a counter ARDT.

The operators of ARDTs implement their application logic. While Counter (Line 7) and
SocialMedia (Line 1) are both wrappers around a Map, their operators make the di�erence.
Each Int stored in the Map of the Counter ARDT represents an individual amount contributed
by the specific ReplicaID. This is expressed by the value operator (Line 8). A zero counter is
expressed by the empty map (Line 13). Like other immutable data structures, operators that
modify ARDTs return a new state, e.g., inc (Line 9) increases a counter by returning a new
counter. But for ARDTs it is su�cient to return a delta – the changed parts of the state –
the rest is managed automatically by applying the merge function. For instance, inc (Line 9)
returns only the entry with the increased values; unchanged entries in the Map are omitted.
The like operator of the SocialMedia ARDT in Line 2, while being a bit more complex, follows
the same pattern. To “like” the post with the given ID, it computes the increment of the
likes counter (Line 3) and returns a new delta of the SocialMedia state, which contains only
the changed ID and defines only the likes component2 of the social post (Line 4). Returning
deltas is preferable, because it is more e�cient to send and merge smaller values. But since
merging is idempotent, developers could also return full states without impacting behavior.

In the examples so far we assumed that a merge function for our ARDTs exist. This is
indeed the case, because all built-in types we used have merge functions provided o�-the-shelf
by our library, and the user-defined ADTs (SocialMedia, SocialPost, and Counter) have their
merge function automatically generated. For example, the merge functions for Counter and
SocialMedia keep all entries of both maps and (recursively) merge the values that have the
same key; and the merge function of the SocialPost merges each component individually. See
Subsection 3.2 for the precise definition of these merge functions. In general, the availability
of a merge function for a type S (e.g., Counter or SocialMedia) is modeled by the type class
Lattice[S] below.

14 trait Lattice [S] { def merge(left: S, right: S): S }

2 The syntax that looks like an assignment in Line 4 is a named parameter, and we assume that this
constructor sets all other components to “empty” values (not shown in the example for brevity). The
-> operator constructs a key-value pair.

ECOOP 2023

Scala 3 implementation

ID message comments likes dislikes

LWW(String) Set of
LWW(String) Counter Counter

SocialMedia - Map of Quadruples

SocialPost

C. Kuessner, R. Mogk, A.-K. Wickert, and M. Mezini 14:7

1 case class SocialMedia (sm: Map[ID , SocialPost]):
2 def like(post: ID , replica : ReplicaID): SocialMedia =
3 val increment = sm(post).likes.inc(replica)
4 SocialMedia (Map(post -> SocialPost (likes = increment)))
5

6 case class SocialPost (message : LWW[String], comments :
Set[LWW[String]], likes: Counter , dislikes : Counter)

Figure 2 Compositional design of the social media ARDTs.

7 case class Counter (c: Map[ReplicaID , Int]):
8 def value: Int = c. values .sum
9 def inc(id: ReplicaID): Counter =

10 Counter (Map(id -> (c. getOrElse (id , 0) + 1))
11

12 object Counter : // object for static methods
13 def zero: Counter = Counter (Map.empty)

Figure 3 The state and operators of a counter ARDT.

The operators of ARDTs implement their application logic. While Counter (Line 7) and
SocialMedia (Line 1) are both wrappers around a Map, their operators make the di�erence.
Each Int stored in the Map of the Counter ARDT represents an individual amount contributed
by the specific ReplicaID. This is expressed by the value operator (Line 8). A zero counter is
expressed by the empty map (Line 13). Like other immutable data structures, operators that
modify ARDTs return a new state, e.g., inc (Line 9) increases a counter by returning a new
counter. But for ARDTs it is su�cient to return a delta – the changed parts of the state –
the rest is managed automatically by applying the merge function. For instance, inc (Line 9)
returns only the entry with the increased values; unchanged entries in the Map are omitted.
The like operator of the SocialMedia ARDT in Line 2, while being a bit more complex, follows
the same pattern. To “like” the post with the given ID, it computes the increment of the
likes counter (Line 3) and returns a new delta of the SocialMedia state, which contains only
the changed ID and defines only the likes component2 of the social post (Line 4). Returning
deltas is preferable, because it is more e�cient to send and merge smaller values. But since
merging is idempotent, developers could also return full states without impacting behavior.

In the examples so far we assumed that a merge function for our ARDTs exist. This is
indeed the case, because all built-in types we used have merge functions provided o�-the-shelf
by our library, and the user-defined ADTs (SocialMedia, SocialPost, and Counter) have their
merge function automatically generated. For example, the merge functions for Counter and
SocialMedia keep all entries of both maps and (recursively) merge the values that have the
same key; and the merge function of the SocialPost merges each component individually. See
Subsection 3.2 for the precise definition of these merge functions. In general, the availability
of a merge function for a type S (e.g., Counter or SocialMedia) is modeled by the type class
Lattice[S] below.

14 trait Lattice [S] { def merge(left: S, right: S): S }

2 The syntax that looks like an assignment in Line 4 is a named parameter, and we assume that this
constructor sets all other components to “empty” values (not shown in the example for brevity). The
-> operator constructs a key-value pair.

ECOOP 2023

ReplicaID val

Int

Counter

More Realistic Example: Local-First Social Media Application with CRDT
Christian Kuessner, et.al., “Algebraic
Replicated Data Types: Programming Secure
Local-First Software”. ACM ECOOP 2023.
https://doi.org/10.1145/3359591.3359737

ReplicaI val

Int

LWW(String)

ReplicaI val

Int

Set of LWW(String)

In CRDT, along with these
type definitions, building
composite semi-lattice
from component ones is
required.

CCR implementation shown later

12

CRDT
Conflict-free Replicated Data Type

CCR
Coordination-free Collaborative Replication

Replica Data
Representation

Ordered Set (Semi-lattice)
indirect from the Data Value

Any Data Type

Updating Operation Monotonic Operations only Any Operations

Query for the Value
of the Replica Monotonic Query Straight Query for the Data Value

Conflict-free
Confluence by …

Pre-defined Merge to get least upper
bounds (LUB) of Semi-lattice

Operational Transformation (OT)
with TP-1 Compositional Property

Eventual
Consistency by … Convergence over Semi-lattice TP2-Confluence with Idempotence,

Associativity and commutativity

Additional data for
Replica

Metadata required for reasoning about
causal relations on the Representation No metadata required

Coordination-free
Asynchronous

messaging by …

CvRDT (State-based): Replica Data
CmRDT (Operation-based):

Reliable Causal Broadcast (RCB) for
commutative and just-once messaging

Exchange operation sequences (patch)
since the last common replication in any
order; allows duplicated messaging and
over circular networks

Structured Data Build structured semi-lattices from
components’ semi-lattice

As structured algebraic data type with
definition of OT using components’ OTs

Comparison of CRDT and CCR for Replication

13

Implementation of CCRAgent
for

Coordination-free Collaborative Data Sharing

⇓

Running CCRAgent in 3 Sites with Network Connections

14

takeichi@Bowmore CCRExecutable % ./COUNTER 9000

*** CCDSAgent Ver6.1 for Counter (2025/02/08) ***

* Agent Started on Port 9000
Listening on http://127.0.0.1:8000
* CCDSAgent Started for Counter (2025/02/08)
 'Conn p' connects to Agent at Port p
 'Drop p' drops connection Port p
 'Sleep n' sleeps n sec. before next command
 'Show' shows Replica and Connection
 'Verbose' prints messages
 'Silent' stops printing messages
 'Run f' runs commands from file f
 ... updates local replica with operations
 'Quit' quits Agent
#1: Conn 9001
#2:
* Connection $9001 started
Connections= []
Conn 9002
#3:
* Connection $9002 started
Connections= [$9001+:(0..0](0..0]]
> Received Ops [Incr $1 5] from $9001

< Sent Ops [Incr $1 5] to $9001

< Sent Ops [Incr $1 5] to $9002
> Received Ops [Incr $1 5] from $9002

< Sent Ops [] to $9002
> Received Ops [] from $9001

#3: Show
Replica {
 Data= 5
 Revs= 1
 UpdLog= [Incr $1 5]
 Delay= 0
 Verbose= False}
Connections= [$9001+:(1..1](1..1],$9002+:(1..1](1..1]]
#4: > Received Ops [Decr $2 2] from $9001

< Sent Ops [Decr $2 2] to $9001

< Sent Ops [Decr $2 2] to $9002
> Received Ops [Decr $2 2] from $9002

< Sent Ops [] to $9002
> Received Ops [] from $9001
> Received Ops [] from $9002

#4: Show
Replica {
 Data= 3
 Revs= 2
 UpdLog= [Incr $1 5,Decr $2 2]
 Delay= 0
 Verbose= False}
Connections= [$9001+:(2..2](2..2],$9002+:(2..2](2..2]]
#5:

takeichi@Bowmore CCRExecutable % ./COUNTER 9002

*** CCDSAgent Ver6.1 for Counter (2025/02/08) ***

* Agent Started on Port 9002
Listening on http://127.0.0.1:8002
* CCDSAgent Started for Counter (2025/02/08)
 'Conn p' connects to Agent at Port p
 'Drop p' drops connection Port p
 'Sleep n' sleeps n sec. before next command
 'Show' shows Replica and Connection
 'Verbose' prints messages
 'Silent' stops printing messages
 'Run f' runs commands from file f
 ... updates local replica with operations
 'Quit' quits Agent
#1: Conn 9001
#2:
* Connection $9001 started
Connections= []

#2: Conn 9000
#3:
* Connection $9000 started
Connections= [$9001+:(0..0](0..0]]

#3: > Received Ops [Incr $1 5] from $9000

< Sent Ops [Incr $1 5] to $9000

< Sent Ops [Incr $1 5] to $9001
> Received Ops [] from $9000

#3: Show
Replica {
 Data= 5
 Revs= 1
 UpdLog= [Incr $1 5]
 Delay= 0
 Verbose= False}
Connections= [$9000+:(1..1](1..1],$9001+:(0..1](0..0]]
#4: Decr 2
#5:
< Sent Ops [Incr $1 5,Decr $2 2] to $9001

< Sent Ops [Decr $2 2] to $9000
> Received Ops [Decr $2 2] from $9000

< Sent Ops [] to $9000
> Received Ops [] from $9000

#5: Show
Replica {
 Data= 3
 Revs= 2
 UpdLog= [Incr $1 5,Decr $2 2]
 Delay= 0
 Verbose= False}
Connections= [$9000+:(2..2](2..2],$9001+:(0..2](0..0]]
#6:

takeichi@Bowmore CCRExecutable % ./COUNTER 9001

*** CCDSAgent Ver6.1 for Counter (2025/02/08) ***

* Agent Started on Port 9001
Listening on http://127.0.0.1:8001
* CCDSAgent Started for Counter (2025/02/08)
 'Conn p' connects to Agent at Port p
 'Drop p' drops connection Port p
 'Sleep n' sleeps n sec. before next command
 'Show' shows Replica and Connection
 'Verbose' prints messages
 'Silent' stops printing messages
 'Run f' runs commands from file f
 ... updates local replica with operations
 'Quit' quits Agent
#1: Conn 9000
#2:
* Connection $9000 started
Connections= []

#2: Incr 5
#3:
< Sent Ops [Incr $1 5] to $9000
> Received Ops [Incr $1 5] from $9000

< Sent Ops [] to $9000
> Received Ops [Incr $1 5] from $9002
- No Direct Conn to $9002

#3: Show
Replica {
 Data= 5
 Revs= 1
 UpdLog= [Incr $1 5]
 Delay= 0
 Verbose= False}
Connections= [$9000+:(1..1](1..1],$9002-]
#4: > Received Ops [Incr $1 5,Decr $2 2] from $9002
- No Direct Conn to $9002

< Sent Ops [Decr $2 2] to $9000
> Received Ops [Decr $2 2] from $9000

< Sent Ops [] to $9000

#4: Show
Replica {
 Data= 3
 Revs= 2
 UpdLog= [Incr $1 5,Decr $2 2]
 Delay= 0
 Verbose= False}
Connections= [$9000+:(2..2](2..2],$9002-]
#5:

Local Update in Site $2

Update Replication in
Site $0 Completes

Update Replication in
Site $2 completes

Circular connection allowed

No direct connection to Site
$2, via Site $0 instead

Local Update in Site $1

Site $1 Site $2 Site $0

15

type ReplicaData = String

data Replica = Replica
 { replicaData :: ReplicaData
 , replicaPatch :: Patch
 , replicaRev :: RevIndex -- Revision Index
 , replicaDelay :: Int -- Delay d*1000000 sec.
 , replicaVerbose :: Bool
 }
initReplica = Replica
 { replicaData = ""
 , replicaPatch = []
 , replicaRev = 0
 , replicaDelay = 0
 , replicaVerbose = False
 }

data Op
 = Ins ReplicaID Int String
 | Del ReplicaID Int Int
 | None
 deriving (Eq)

effectfulOp :: Op -> ReplicaData -> Op
effectfulOp op@(Ins _ k s) d =
 if (k>=0)&&(k<=length d) then op else None
effectfulOp op@(Del _ k n) d =
 if (k>=0)&&(k+n<=length d) then op else None
effectfulOp None d = None

transOp :: ReplicaData -> Op -> Op -> (Op, Op)
transOp d p q =
 let p'= effectfulOp p d
 q'= effectfulOp q d
 in
 if p'==q' then (None, None)
 else trans' p' q'

takeichi@Bowmore RTCE % ./RTCE 9000

*** CCDSAgent Ver6.1 for RTCE Text Editing (2024/10/07) ***

* Agent Started on Port 9000

Listening on http://127.0.0.1:8000

* CCDSAgent Started for RTCE Text Editing (2024/10/07)

 'Conn p' connects to Agent at Port p

 'Drop p' drops connection Port p

 'Sleep n' sleeps n sec. before next command

 'Show' shows Replica and Connection

 'Verbose' prints messages

 'Silent' stops printing messages

 'Run f' runs commands from file f

 ... updates local replica with operations

 'Quit' quits Agent

#1: Ins 0 "XY", Ins 1 "AB"

#2: Show

Replica {

 Data= "XABY"

 Revs= 2

 UpdLog= [Ins $0 0 "XY",Ins $0 1 "AB"]

 Delay= 0

 Verbose= False}

Connections= []

#3: Del 2 2

#4: Show

Replica {

 Data= "XA"

 Revs= 3

 UpdLog= [Ins $0 0 "XY",Ins $0 1 "AB",Del $0 2 2]

 Delay= 0

 Verbose= False}

Connections= []

Updating Op: Ins (Insert) and Del (Delete)

Specify position and text

Specify position and number of chars
Successive insertions

Delete 2 chars from position 2

CCR Implementation of Realtime Collaborative Editor (1)

16

trans' p@(Ins i_p k_p t_p) q@(Ins i_q k_q t_q) =
 if p==q then (None,None)
 else
 if k_p==k_q then
 if t_p==t_q then
 if i_p>i_q then
 (Ins i_p (k_p+length t_q) t_p, Ins i_q k_q t_q)
 else
 (Ins i_p k_p t_p, Ins i_q (k_q+length t_p) t_q)
 else
 if t_p>t_q then
 (Ins i_p (k_p+length t_q) t_p, Ins i_q k_q t_q)
 else
 (Ins i_p k_p t_p, Ins i_q (k_q+length t_p) t_q)
 else
 if (k_p > k_q)
 then
 (Ins i_p (k_p+length t_q) t_p, Ins i_q k_q t_q)
 else
 (Ins i_p k_p t_p, Ins i_q (k_q+length t_p) t_q)
trans' p@(Del i_p k_p n_p) q@(Del i_q k_q n_q)
 | k_p==k_q && n_p==n_q
 = (None,None)
 | k_q >= k_p+n_p
 = (Del i_p k_p n_p, Del i_q (k_q-n_p) n_q)
 | k_p >= k_q+n_q
 = (Del i_p (k_p-n_q) n_p, Del i_q k_q n_q)
 | k_p >= k_q && k_p+n_p <= k_q+n_q
 = (Del i_p k_q 0, Del i_q k_q (n_q-n_p))
 | k_q >= k_p && k_q+n_q <= k_p+n_p
 = (Del i_p k_p (n_p-n_q), Del i_q k_p 0)
 | k_p >= k_q
 = let d = k_q+n_q-k_p
 in (Del i_p k_q (n_p-d), Del i_q k_q (n_q-d))
 | otherwise
 = let d = k_p+n_p-k_q
 in (Del i_p k_p (n_p-d), Del i_q k_p (n_q-d))

trans' (Ins i_p k_p t_p) (Del i_q k_q n_q)
 | k_p >= k_q && k_p < k_q+n_q
 = (Ins i_p k_q "", Del i_q k_q (n_q+length t_p))
 | k_p < k_q
 = (Ins i_p k_p t_p, Del i_q (k_q+length t_p) n_q)
 | otherwise
 = (Ins i_p (k_p-n_q) t_p, Del i_q k_q n_q)
trans' d@Del{} i@Ins{} =
 let (p',q') = trans' i d in (q',p')
trans' None q = (None,q)
trans' p None = (p,None)

• OT for RTCE is rather complex and
tedious to proof that this has the
TP1 and TP2 with compositional and
confluence properties.

• Currently, the proof has not yet
been done!
Instead, it has been checked by
execution to confirm no exceptions
reported through more than 1000
randomly generated operations.

CCR Implementation of Realtime Collaborative Editor (2)

CCR Implementation of Composite Structured Replica - QUAD for Social Media

17

import qualified ReplicaLWW_String -- message
import qualified ReplicaESET_String -- comments
import qualified ReplicaCOUNTER -- likes and dislikes

data ReplicaData =
 Quad ReplicaLWW_String.ReplicaData -- message Replica
 ReplicaESET_String.ReplicaData -- comments Replica
 ReplicaCOUNTER.ReplicaData -- likes Replica
 ReplicaCOUNTER.ReplicaData -- dislikes Replica
initReplica = Replica
 { replicaData =
 Quad (ReplicaLWW_String.replicaData
 ReplicaLWW_String.initReplica)
 (ReplicaESET_String.replicaData
 ReplicaESET_String.initReplica)
 (ReplicaCOUNTER.replicaData
 ReplicaCOUNTER.initReplica)
 (ReplicaCOUNTER.replicaData
 ReplicaCOUNTER.initReplica)
 , replicaPatch = []
 , replicaRev = 0
 , replicaDelay = 0
 , replicaVerbose = False
 }

data Op
 = QuadOp ReplicaID
 ReplicaLWW_String.Patch
 ReplicaESET_String.Patch
 ReplicaCOUNTER.Patch
 ReplicaCOUNTER.Patch
 | None
 deriving (Eq)

takeichi@Bowmore QUAD % ./QUAD 9000

*** CCDSAgent Ver6.3 for Social Post Quadruples (2024/08/18) ***
#1: (Write "XYZ";Add "AB";Incr 6;Decr 2)

#2: Show

Replica {

 Data= ({"XYZ"},{"AB"},6,-2)

 Revs= 1

 UpdLog= [QuadOp $0 [Write $0 {"XYZ"}] [Add $0 "AB"] [Incr $0 6] [Decr $0 2]]

 Delay= 0

 Verbose= False}

Connections= []

transOp :: ReplicaData -> Op -> Op -> (Op, Op)
transOp (Quad message comments likes dislikes) p q =
 if p==q then (None, None) else
 if p==None then (None, q) else
 if q==None then (p, None) else
 let (QuadOp replicaID_p ms_p cs_p ls_p ds_p) = p
 (QuadOp replicaID_q ms_q cs_q ls_q ds_q) = q
 (ms_p',ms_q') =
 ReplicaLWW_String.transPatch message ms_p ms_q
 (cs_p',cs_q') =
 ReplicaESET_String.transPatch comments cs_p cs_q
 (ls_p',ls_q') =
 ReplicaCOUNTER.transPatch likes ls_p ls_q
 (ds_p',ds_q') =
 ReplicaCOUNTER.transPatch dislikes ds_p ds_q
 in (QuadOp replicaID_p ms_p' cs_p' ls_p' ds_p',
 QuadOp replicaID_q ms_q' cs_q' ls_q' ds_q')

Replica QUAD composed of 4 primitive of
which Replica definitions imported

OT transOp
transforms ops using
OT for component
CCRs

Operations given component-wise in
parentheses delimited with ‘;’.

Display current Replica in short format

18

• MAP_QUAD maps Int keys to quadruples values
• Quadruple values consist of four component values of Replica Type representing

Social Media information
• Updates of the elements of the Map are processed in component-wise of

quadruples
type ElemType = ReplicaQUAD.ReplicaData
type KeyType = Int

type ReplicaData = IntMap.IntMap ElemType

data Replica = Replica
 { replicaData :: ReplicaData
 , replicaPatch :: Patch
 , replicaRev :: RevIndex -- Revision Index
 , replicaDelay :: Int -- Delay d*1000000 sec.
 , replicaVerbose :: Bool
 }

data Op
 = Upd ReplicaID KeyType ReplicaQUAD.Op
 | Del ReplicaID KeyType
 | None
 deriving (Eq)

applyOp :: Op -> ReplicaData -> (ReplicaData,Op)
applyOp op@(Upd _ k quadOp) d =
 let v =
 case IntMap.lookup k d of
 Nothing ->
 ReplicaQUAD.replicaData
 ReplicaQUAD.initReplica
 Just v -> v
 (v',_) = ReplicaQUAD.applyOp quadOp v
 in (IntMap.insert k v' d, op)
applyOp op@(Del _ k) d =
 (IntMap.delete k d, op)
applyOp None d = (d,None)

effectfulOp :: Op -> ReplicaData -> Op
effectfulOp op@(Upd _ k quadOp) d = op
effectfulOp op@(Del _ k) d = op
effectfulOp None d = None
transOp :: ReplicaData -> Op -> Op -> (Op, Op)
transOp d p q =
 let p'= effectfulOp p d
 q'= effectfulOp q d
 in if p'==q' then (None, None)
 else trans' p' q'
 where
 trans' p@(Upd i_p k_p ops_p) q@(Upd i_q k_q ops_q)=
 if k_p == k_q then
 let v = case IntMap.lookup k_p d of
 Nothing ->
 ReplicaQUAD.replicaData
 ReplicaQUAD.initReplica
 Just v -> v
 (ops_p',ops_q')=
 ReplicaQUAD.transPatch v ops_p ops_q
 in (Upd i_p k_p ops_p', Upd i_q k_q ops_q')
 else (p,q)
 trans' p@(Del i_p k_p) q@(Del i_q k_q) =
 if k_p == k_q then (None,None) else (p,q)
 -- Del is preferred to Upd
 trans' p@(Upd i_p k_p ops_p) q@(Del i_q k_q) =
 if k_p == k_q then (None,q) else (p,q)
 trans' p@(Del i_p k_p) q@(Upd i_q k_q ops_q) =
 if k_p == k_q then (p,None) else (p,q)
 trans' None q = (None,q)
 trans' p None = (p,None)

Updating Operations of the Map

When Upd and
Del given with
the same key,
Del is preferred

Initial QUAD value
installed when no
element with key
found in the Map

CCR Implementation of Local-First Social Media Application (1)

19

• Updating operations of the Map are Upd and Del :

- Upd quadOp updates the quadruple with the Map key by quadOp for quadruples.

- Del deletes the quadruple with as the Map key
k k

k k

takeichi@Bowmore MAP_QUAD % ./MAP_QUAD 9001

*** CCDSAgent Ver6.3 for Map QUAD (2025/03/08) ***

* Agent Started on Port 9001
#1: Conn 9000
* Connection $9000 started
Connections= []

#2: Upd 1 (Write "XYZ";Add "AB";Incr 6,Decr 2; Decr 3)
< Sent Ops [Upd $1 1:[QuadOp $1 [Write $1 {“XYZ"}]...]]
 to $9000
...
#3: Show
Replica {
 Data= <1:({"XYZ"},{"AB"},4,-3)>
 Revs= 1
 ...}
Connections= [$9000+:(1..1](1..1]]

> Received Ops [Upd $0 2:[QuadOp $0 [Write $0 {“UV"}]...]
 from $9000

...

#4: Show
Replica {
 Data= <1:({"XYZ"},{"AB"},4,-3),2:({"UV"},{"C"},-1,5)>
 Revs= 2
 ...}
Connections= [$9000+:(2..2](2..2]]

> Received Ops [Del $0 1] from $9000
...

#5: Show
Replica {
 Data= <2:({"UV"},{"C"},-1,5)>
 Revs= 3
 ...}
Connections= [$9000+:(3..3](3..3]]

Upd specifies Key and quadOp

takeichi@Bowmore MAP_QUAD % ./MAP_QUAD 9000

*** CCDSAgent Ver6.3 for Map QUAD (2025/03/08) ***

* Agent Started on Port 9000

#1: Conn 9001
* Connection $9001 started
Connections= []

> Received Ops [Upd $1 1:[QuadOp $1 [Write $1 {"XYZ"}]...]]
 from $9001
...
#2: Show
Replica {
 Data= <1:({"XYZ"},{"AB"},4,-3)>
 Revs= 1
 ...}
Connections= [$9001+:(1..1](1..1]]

#3: Upd 2 (Write "UV";Add "C";Decr 1;Incr 5)
< Sent Ops [Upd $0 2:[QuadOp $0 [Write $0 {"UV"}]...]]
 to $9001
...

#4: Show
Replica {
 Data= <1:({"XYZ"},{"AB"},4,-3),2:({"UV"},{"C"},-1,5)>
 Revs= 2
 ...}
Connections= [$9001+:(2..2](2..2]]

#5: Del 1
< Sent Ops [Del $0 1] to $9001
...

#6: Show
Replica {
 Data= <2:({"UV"},{"C"},-1,5)>
 Revs= 3
 ...}
Connections= [$9001+:(3..3](3..3]]

QUAD stored with key 1

Del specifies the key only
Element with Key 1 has been removed

QUAD stored with key 2

CCR Implementation of Local-First Social Media Application (2)

20

• The first component of QUAD is of Replica type LWW_String , which keeps both
values as set elements when which of the concurrent updates cannot be determined
as the Last-Writer.

 . . .

#10: Show
Replica {
 Data= <2:({"UV"},{"C"},-1,5)>
 Revs= 5
 ...
}
Connections= [$9000+:(5..5](5..5]]

#11: Delay 30
* Agent delays 30 sec. before accepts Patch

#12: Upd 1 (Write "G";None;None;None)

< Sent Ops [Upd $1 1:[QuadOp $1 [Write $1 {"G"}] ...]]
 to $9000

> Received Ops [Upd $0 1:[QuadOp $0 [Write $0 {“H”}]...]
 from $9000

...

#13: Show
Replica {
 Data= <1:({"G","H"},{},0,0),2:({"UV"},{"C"},-1,5)>
 Revs= 7
 ...}
Connections= [$9000+:(7..7](7..7]]

 . . .

#10: Show
Replica {
 Data= <2:({"UV"},{"C"},-1,5)>
 Revs= 5
 ...}
Connections= [$9001+:(5..5](5..5]]

#11: Delay 30
* Agent delays 30 sec. before accepts Patch

#12: Upd 1 (Write "H";None;None;None)

< Sent Ops [Upd $0 1:[QuadOp $0 [Write $0 {"H"}]...]]
 to $9001
> Received Ops [Upd $1 1:[QuadOp $1 [Write $1 {"G"}]...]]
 from $9001

...

#13: Show
Replica {
 Data= <1:({"G","H"},{},0,0),2:({"UV"},{"C"},-1,5)>
 Revs= 7
 ...}
Connections= [$9001+:(7..7](7..7]]

Simulate concurrent
updates with ‘Delay’

Both are stored as the QUAD with key 1

CCR Implementation of Local-First Social Media Application (3)

⇑

21

More to do for
Coordination-free Collaborative Data Sharing

• Proving TP1+TP2 Properties of OT and Reasoning about
“Confluence”

• Putting forward the claim on “Monotonicity is not, but
Confluence is”

• Developing Privacy-Preserving Local-First Software with
Dejima Architecture

⇑

22

More to do for
Coordination-free Collaborative Data Sharing

————

Proving TP1+TP2 Properties of OT
and

Reasoning about “Confluence”

OT for Coordination-free Collaborative Replication

How to Replicate Collaboratively with Conflict resolution
=> Replicate local updates with conflict resolution

How to Replicate Collaboratively without Coordination
=> Replicate confluent updating operations for coordination avoidance

5

Algebraic Structure of Confluence Property

合流性の代数構造
合流性演算 (“Confluent and ”)

 は による合流性 を表す。

• 単位元の存在 （Identity element):

• べき等律 (Idempotence):

- の最小性による。

• 可換律 (Commutativity)

- から が成り立つ。

• 結合律 (Associativity):

- 結合律は TP2-合流性の条件である。

- を と書くこともある。

p # q p q

p # q (pq, qp)=TD(p, q) p∈qp 𝒟D q∈pq

p # ! =D ! # p =D p

p # p =D p

TD

p # q =D q # p

D∈p∈qp=D∈q∈pq p # q =D q # p

(p # q) # r =D p # (q # r)

(p # q) # r p # q # r

p q

pqqp

D

D∈p∈qp=D∈q∈pq

 (pq, qp)=TD(p, q) p#q

 D

 r#p

p
q

r

qp

qr

pq
rp

rq

(p # q) # r
=D (q # r) # p
=D (r # p) # q

TP2-Confluence law

 p#q

 q#r

pr

Operational Transformation with
Compositional TP1-Confluence
defines collaborative operator

TD

#D

TP2-Confluence guarantees ’s
Idempotence, Associativity and
Commutativity

#

3

データの更新操作 （定義）
• に対する更新操作の全体 は「無操作」を
表す単位元 といくつかの基本操作に対応する生成
元をもち操作の結合演算 による単
位的半群 (monoid) をなす。

• に対する更新操作 の適用を（ を重ねて
用いて） 、 で表す。これに
より、 のよ
うに表現できる。

• 更新操作 の列 を合成して得られる
 を のように表す。

• に操作 , を施した結果が等しい関係
 は 上の同値関係 を定め

る。このような と は に関して 上での
同等性 を定める。

D ⟨ ⟩ O
!

⊙ :: O ′ O ⊑ O
(O, ! , ⊙)

D p ⟨ O ⊙
D ⊙ p ⊙ :: ⟩ ′ O ⊑ ⟩

D ⊙ p ⊙ q = (D ⊙ p) ⊙ q = D ⊙ (p ⊙ q)

pi p1, p2,⊏ p1⊙
p2⊙⊏ ⟨ O ps=∈p1, p2, ⊏𝒟
D ⟨ ⟩ p q
D ⊙ p = D ⊙ q O p ×D q

p q D ⟨ ⟩ O
p =D q

操作変換の定義と基本的性質
• TP1 合流性 (TP1-Confluency)
操作変換 は に対する２者
間の更新 , に対して により

 となる を与える。
• 最小性 (Minimality)
変換 が を与えるとき、 ,

 であるような は存在しない。すなわ
ち、操作変換による余分な操作は付加されない。

• 対称性 (Symmetricity)
 ならば は を与え

る。
• 合成保存性 (Compositionality)

 , ならば
 が成り立つ。

TD :: O ′ O ⊑ O ′ O D
p q (pq, qp)=TD(p, q) D⊙p

⊙qp=D⊙q⊙pq pq, qp

TD(p, q) (pq, qp) pq=p→ q⊙r qp

=q→ p⊙r r ⋯!

(pq, qp)=TD(p, q) TD(q, p) (qp, pq)

(p→ 1, q→)=TD(p1, q) (p→ 2, q→ →)=TD⊙p1
(p2, q→) (p→ 1⊙

p→ 2 , q→ →)=TD(p1⊙p2, q)

Operational Transformation for Collaborative Replication
p q

pqqp

D

D⊙p⊙qp=D⊙q⊙pq

 (pq, qp)=TD(p, q)

q→

q→ →

p2

p1 q

 (p→ 1⊙p→ 2, q→ → 1) = TD(p1⊙p2, q1)

p→ 1
p→ 2

D

D ⊙ p1

操作変換の定義にあたっては の生成元に対する変換を定め、合成保存性が成り立つようにそれを適用して任意
の の操作に対する変換を定めるのが一般的だといえる。

O
O

3

データの更新操作 （定義）
• に対する更新操作の全体 は「無操作」を
表す単位元 といくつかの基本操作に対応する生成
元をもち操作の結合演算 による単
位的半群 (monoid) をなす。

• に対する更新操作 の適用を（ を重ねて
用いて） 、 で表す。これに
より、 のよ
うに表現できる。

• 更新操作 の列 を合成して得られる
 を のように表す。

• に操作 , を施した結果が等しい関係
 は 上の同値関係 を定め

る。このような と は に関して 上での
同等性 を定める。

D ⟨ ⟩ O
!

⊙ :: O ′ O ⊑ O
(O, ! , ⊙)

D p ⟨ O ⊙
D ⊙ p ⊙ :: ⟩ ′ O ⊑ ⟩

D ⊙ p ⊙ q = (D ⊙ p) ⊙ q = D ⊙ (p ⊙ q)

pi p1, p2,⊏ p1⊙
p2⊙⊏ ⟨ O ps=∈p1, p2, ⊏𝒟
D ⟨ ⟩ p q
D ⊙ p = D ⊙ q O p ×D q

p q D ⟨ ⟩ O
p =D q

操作変換の定義と基本的性質
• TP1 合流性 (TP1-Confluency)
操作変換 は に対する２者
間の更新 , に対して により

 となる を与える。
• 最小性 (Minimality)
変換 が を与えるとき、 ,

 であるような は存在しない。すなわ
ち、操作変換による余分な操作は付加されない。

• 対称性 (Symmetricity)
 ならば は を与え

る。
• 合成保存性 (Compositionality)

 , ならば
 が成り立つ。

TD :: O ′ O ⊑ O ′ O D
p q (pq, qp)=TD(p, q) D⊙p

⊙qp=D⊙q⊙pq pq, qp

TD(p, q) (pq, qp) pq=p→ q⊙r qp

=q→ p⊙r r ⋯!

(pq, qp)=TD(p, q) TD(q, p) (qp, pq)

(p→ 1, q→)=TD(p1, q) (p→ 2, q→ →)=TD⊙p1
(p2, q→) (p→ 1⊙

p→ 2 , q→ →)=TD(p1⊙p2, q)

Operational Transformation for Collaborative Replication
p q

pqqp

D

D⊙p⊙qp=D⊙q⊙pq

 (pq, qp)=TD(p, q)

q→

q→ →

p2

p1 q

 (p→ 1⊙p→ 2, q→ → 1) = TD(p1⊙p2, q1)

p→ 1
p→ 2

D

D ⊙ p1

操作変換の定義にあたっては の生成元に対する変換を定め、合成保存性が成り立つようにそれを適用して任意
の の操作に対する変換を定めるのが一般的だといえる。

O
O

4

Algebraic Structure of Confluence Property

合流性の代数構造
合流性演算 (“Confluent and ”)

 は による合流性 を表す。

• 単位元の存在 （Identity element):

• べき等律 (Idempotence):

- の最小性による。

• 可換律 (Commutativity)

- から が成り立つ。

• 結合律 (Associativity):

- 結合律は TP2-合流性の条件である。

- を と書くこともある。

p # q p q

p # q (pq, qp)=TD(p, q) p⟨qp ⟩D q⟨pq

p # ! =D ! # p =D p

p # p =D p

TD

p # q =D q # p

D⟨p⟨qp=D⟨q⟨pq p # q =D q # p

(p # q) # r =D p # (q # r)

(p # q) # r p # q # r

p q

pqqp

D

D⟨p⟨qp=D⟨q⟨pq

 (pq, qp)=TD(p, q) p#q

 D

 r#p

p
q

r

qp

qr

pq
rp

rq

(p # q) # r
=D (q # r) # p
=D (r # p) # q

TP2-Confluence law

 p#q

 q#r

pr

24

Building up Confluence with OT
TD :: O → O → O → O, (pq, qp) = TD(p, q) for p in site
P and q in Q fulfills TP1-Confluence p # qp ↔D q # pq,
written as p#Dq, also as p#q when D is obvious.

Idempotence When P and Q share p applied to D to
get the confluent state D # p and hence p#Dp = p.
Commutativity It is straightforward that
p#Dq = q#Dp for p and q on D.
Associativity To establish the confluence property of
TD applied in two steps for updates on D by three
sites, the relations should hold regardless of the
application order:
(p#Dq)#Dr = (p#Dr)#Dq, (q#Dr)#Dp = (q#Dp)#Dr ,
and (r#Dp)#Dq = (r#Dq)#Dp.

Masato Takeichi (takeichi@acm.org) Coordination-free Collaborative Replication based on Operational TransformationSeptember 16, 2024 13 / 36

25

Algebraic Structure of Confluence Property
Identity element p#D! = !#Dp =D p.

Idempotence p#Dp = p, which comes from the
Minimal Property of TD

Commutativity p#Dq = q#Dp, which comes from
the TP1-Property of TD

Associativity (p#Dq)#Dr = p#D(q#Dr), which is
required for the TP2-Property of TD

The Algebraic Structure of Confluence Property suggests
us to put the TP2-Confluence Property into practical
coordination-free replication by sending updated
operations on the common replicated data in any order
to others.
Masato Takeichi (takeichi@acm.org) Coordination-free Collaborative Replication based on Operational TransformationSeptember 16, 2024 17 / 36

⇑

More to do for
Coordination-free Collaborative Data Sharing

————

Putting forward the claim on
“Monotonicity is not, but Confluence is”

27

• Monotonicity is not the only golden rule for coordination-free
collaborative replication, while the CALM theorem lays stress on this as in

J. M. Hellerstein and P. Alvaro. Keeping CALM: when distributed
consistency is easy. Communications of the ACM, 63(9):72–81, 2020.

• The proof sketch states that the confluence property of the operation is
a generalization of commutativity, that is, the order of its operands makes
no difference to the result.
- An operation is confluent if it produces the same outputs for any

nondeterministic ordering of a set of inputs.
- If the outputs of one confluent operation are consumed by another

confluent operator as inputs, the resulting composite operation is
confluent.

- Hence, if we build programs by composing confluent operations, our
programs are confluent by construction, despite orderings of
messages or execution steps within and across distributed sites.

• CCR actually realizes the confluence property by implementing confluent
operations with OT and therefore “CALM” should be superseded by
“Consistency By Constructing Confluent Operations”.

Confluence for Coordination-freeness

28

• While coordination is a “killer” of performance in distributed systems, no
coordination may suffer from the consistency of distributed data.

• The CALM (Consistency As Logical Monotonicity) theorem brings
about a solution to the question

“What is the family of problems that can be consistently computed in
a distributed fashion without coordination, and what lies outside that
family?”

as
“A program has a consistent, coordination-free distributed
implementation if and only if it is monotonic.”

• Since confluent operations are the basic constructs of monotonic
systems, they can do more than that if collaboration is utilized for
establishing confluence of components of distributed systems.

• Thus, we should shatter the CALM of monotonicity to open the door to
claim that the same holds for programs composed of confluent
operations like CCR.

Confluence rather than Monotonicity

29

• The proof sketch states that the confluence property of the operation is
a generalization of commutativity, that is, the order of its operands
makes no difference to the result.
- An operation is confluent if it produces the same outputs for any

nondeterministic ordering of a set of inputs.
- The CCR replication procedure is confluent since it produces the

same replicated data for any nondeterministic ordering of a set of
concurrent updates.

- If the outputs of one confluent operation are consumed by another
confluent operator as inputs, the resulting composite operation is
confluent.

- Hence, if we build programs by composing confluent operations, our
programs are confluent by construction, despite orderings of
messages or execution steps within and across distributed sites.

• Confluence of CCR also satisfies above properties and “CALM” should
be superseded by “Consistency By Confluence”.

Confluence Operation for Coordination-freeness

⇑

30

More to do for
Coordination-free Collaborative Data Sharing

————

Developing Privacy-Preserving Local-First Software
with Dejima Architecture

Ishihara, Y., Kato, H., Nakano, K., Onizuka, M., & Sasaki, Y. (2019). Toward BX-based
architecture for controlling and sharing distributed data. In 2019 IEEE BigComp.
https://doi.org/10.1109/BIGCOMP.2019.8679145

!"#$

%"&'$#(!
!

)$*+,"

%"&'$#("
!"

!"#$

%"&'$#(!
"

)$*+,"

%"&'$#("
"!

-$$.(#
!

-$$.(#
"

"
!#

-$$.(#
#

"
#!

"
!ℓ

"
ℓ!

-$$.(#
ℓ

!
#

"
#"

"
#"

"
"%

"
!&

$												&/(

!0(&$%1$$2(#34.5$($

"26(%".7$%(&

/

#+,8'$(6"%"(

#925:.32+;"%+32

• Dejima Architecture manages selective P2P data sharing using Bidirectional
Transformation between the local Base table and shared Dejima tables
between distributed Peers.

• Combined with CCR, Dejima architecture strengthens privacy of the Local-
First Software.

31

Coordination-free Collaborative Dejima Data Sharing
for Privacy-Preserving Local-First Software (1)

p q

Site P Site Q

D⊙qD⊙p
pqqp

(D⊙p)⊙qp=(D⊙q)⊙pq

BP BQ

 BQ⊙q

Consistent
State

DP DQ
DgetP getQ

 putQ BQputP BP

p

BP⊙p

q

getP⊙qp
⊙putP (BP⊙p)

 BP⊙p⊙getP⊙qp⊙putP (BP⊙p) BQ⊙q⊙getQ⊙pq⊙putQ (BQ⊙q)

getQ⊙pq
⊙putQ (BQ⊙q)

Consistent State

Coordination-free Collaborative Dejima Data Sharing

 (pq, qp) = TD(p, q)

① ②

③

• In Site , updates on the Base table are transformed by the forward
transformation to get each Dejima table that can be replicated with
Dejima tables of other Sites using Coordination-free Collaborative
Replication.

• The replicated Dejima is put back to the Base table as by the backward
transformation .

P p BP
getP DP

DQ Q

D′￼P B′￼P
putP

32

Coordination-free Collaborative Dejima Data Sharing
for Privacy-Preserving Local-First Software (2)

⇑

